aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/convert/ssse3_unpack_sc12.cpp
blob: 5494e0fd7528085242d58ae5eb0269453bff4e7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
//
// Copyright 2017 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "convert_unpack_sc12.hpp"
#include <emmintrin.h>
#include <tmmintrin.h>

using namespace uhd::convert;

/*
 * Shuffle Orderings - Single 128-bit SSE register
 *
 *     12-bit packed I/Q byteswapped
 *      -----------------------
 *     |   I0   |   Q0   |  I1 | 0
 *     |-----------------------|
 *     | I1 |  Q1  |  I2  | Q2 |             Input
 *     |-----------------------|
 *     | Q2  |   I3   |   Q3   | 2
 *      -----------------------
 *     31                     0
 *
 *
 *   12-bit interleaved packed I/Q
 *  ---------------------------------------
 * |I0|Q0|I1|Q1|I2|Q2|I3|Q3|               | Byteswap Removed
 *  ---------------------------------------
 * | 127                32 | 31  Empty   0 |
 *
 *
 *           Packed   Unpacked
 *  Sample    Index    Index   Offset
 * =====================================
 *    I0      15,14     0,1      0
 *    Q0      14,13     8,9      4
 *    I1      12,11     2,3      0
 *    Q1      11,10    10,11     4           12-bit Indices
 *    I2       9,8      4,5      0
 *    Q2       8,7     12,13     4
 *    I3       6,5      6,7      0
 *    Q3       5,4     14,15     4
 *
 *
 *   12-bit deinterleaved unpacked I/Q
 *  ---------------------------------------
 * | Q3 | Q2 | Q1 | Q0 | I3 | I2 | I1 | I0 | Shuffle-1
 *  ---------------------------------------
 * |  4-bit >> offset  | High bit aligned  |
 *
 *
 *   16-bit interleaved I/Q
 *  ---------------------------------------
 * | Q3 | I3 | Q2 | I2 | Q1 | I1 | Q0 | I0 | Output (Shuffle-2)
 *  ---------------------------------------
 * | 127                                 0 |
 *
 */
#define SC12_SHIFT_MASK 0x0fff0fff, 0x0fff0fff, 0xfff0fff0, 0xfff0fff0
#define SC12_PACK_SHUFFLE1 5, 4, 8, 7, 11, 10, 14, 13, 6, 5, 9, 8, 12, 11, 15, 14
#define SC12_PACK_SHUFFLE2 15, 14, 7, 6, 13, 12, 5, 4, 11, 10, 3, 2, 9, 8, 1, 0

template <typename type, tohost32_type tohost>
inline void convert_sc12_item32_3_to_star_4(const item32_sc12_3x& input,
    std::complex<type>* out,
    double scalar,
    typename std::enable_if<std::is_same<type, float>::value>::type* = NULL)
{
    __m128i m0, m1, m2, m3, m4;
    m0 = _mm_set_epi32(SC12_SHIFT_MASK);
    m1 = _mm_set_epi8(SC12_PACK_SHUFFLE1);
    m2 = _mm_loadu_si128((__m128i*)&input);
    m2 = _mm_shuffle_epi32(m2, _MM_SHUFFLE(0, 1, 2, 3));
    m3 = _mm_shuffle_epi8(m2, m1);
    m3 = _mm_and_si128(m3, m0);

    m4 = _mm_setzero_si128();
    m1 = _mm_unpacklo_epi16(m4, m3);
    m2 = _mm_unpackhi_epi16(m4, m3);
    m2 = _mm_slli_epi32(m2, 4);
    m3 = _mm_unpacklo_epi32(m1, m2);
    m4 = _mm_unpackhi_epi32(m1, m2);

    __m128 m5, m6, m7;
    m5 = _mm_set_ps1(scalar / (1 << 16));
    m6 = _mm_cvtepi32_ps(m3);
    m7 = _mm_cvtepi32_ps(m4);
    m6 = _mm_mul_ps(m6, m5);
    m7 = _mm_mul_ps(m7, m5);

    _mm_storeu_ps(reinterpret_cast<float*>(&out[0]), m6);
    _mm_storeu_ps(reinterpret_cast<float*>(&out[2]), m7);
}

template <typename type, tohost32_type tohost>
inline void convert_sc12_item32_3_to_star_4(const item32_sc12_3x& input,
    std::complex<type>* out,
    double,
    typename std::enable_if<std::is_same<type, short>::value>::type* = NULL)
{
    __m128i m0, m1, m2, m3;
    m0 = _mm_set_epi32(SC12_SHIFT_MASK);
    m1 = _mm_set_epi8(SC12_PACK_SHUFFLE1);
    m2 = _mm_set_epi8(SC12_PACK_SHUFFLE2);

    m3 = _mm_loadu_si128((__m128i*)&input);
    m3 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(0, 1, 2, 3));
    m3 = _mm_shuffle_epi8(m3, m1);
    m3 = _mm_and_si128(m3, m0);

    m0 = _mm_slli_epi16(m3, 4);
    m1 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(1, 0, 0, 0));
    m0 = _mm_unpackhi_epi64(m1, m0);
    m1 = _mm_shuffle_epi8(m0, m2);

    _mm_storeu_si128((__m128i*)out, m1);
}

template <typename type, tohost32_type tohost>
struct convert_sc12_item32_1_to_star_2 : public converter
{
    convert_sc12_item32_1_to_star_2(void) : _scalar(0.0)
    {
        // NOP
    }

    void set_scalar(const double scalar)
    {
        const int unpack_growth = 16;
        _scalar                 = scalar / unpack_growth;
    }

    void operator()(
        const input_type& inputs, const output_type& outputs, const size_t nsamps)
    {
        const size_t head_samps = size_t(inputs[0]) & 0x3;
        size_t rewind           = 0;
        switch (head_samps) {
            case 0:
                break;
            case 1:
                rewind = 9;
                break;
            case 2:
                rewind = 6;
                break;
            case 3:
                rewind = 3;
                break;
        }

        const item32_sc12_3x* input =
            reinterpret_cast<const item32_sc12_3x*>(size_t(inputs[0]) - rewind);
        std::complex<type>* output = reinterpret_cast<std::complex<type>*>(outputs[0]);
        std::complex<type> dummy;
        size_t i = 0, o = 0;
        switch (head_samps) {
            case 0:
                break; // no head
            case 1:
                convert_sc12_item32_3_to_star_4<type, tohost>(
                    input[i++], dummy, dummy, dummy, output[0], _scalar);
                break;
            case 2:
                convert_sc12_item32_3_to_star_4<type, tohost>(
                    input[i++], dummy, dummy, output[0], output[1], _scalar);
                break;
            case 3:
                convert_sc12_item32_3_to_star_4<type, tohost>(
                    input[i++], dummy, output[0], output[1], output[2], _scalar);
                break;
        }
        o += head_samps;

        // convert the body
        while (o + 3 < nsamps) {
            convert_sc12_item32_3_to_star_4<type, tohost>(input[i], &output[o], _scalar);
            i += 1;
            o += 4;
        }

        const size_t tail_samps = nsamps - o;
        switch (tail_samps) {
            case 0:
                break; // no tail
            case 1:
                convert_sc12_item32_3_to_star_4<type, tohost>(
                    input[i], output[o + 0], dummy, dummy, dummy, _scalar);
                break;
            case 2:
                convert_sc12_item32_3_to_star_4<type, tohost>(
                    input[i], output[o + 0], output[o + 1], dummy, dummy, _scalar);
                break;
            case 3:
                convert_sc12_item32_3_to_star_4<type, tohost>(input[i],
                    output[o + 0],
                    output[o + 1],
                    output[o + 2],
                    dummy,
                    _scalar);
                break;
        }
    }

    double _scalar;
};

static converter::sptr make_convert_sc12_item32_le_1_to_fc32_1(void)
{
    return converter::sptr(new convert_sc12_item32_1_to_star_2<float, uhd::wtohx>());
}

static converter::sptr make_convert_sc12_item32_le_1_to_sc16_1(void)
{
    return converter::sptr(new convert_sc12_item32_1_to_star_2<short, uhd::wtohx>());
}

UHD_STATIC_BLOCK(register_sse_unpack_sc12)
{
    uhd::convert::id_type id;
    id.num_inputs    = 1;
    id.num_outputs   = 1;
    id.output_format = "fc32";
    id.input_format  = "sc12_item32_le";
    uhd::convert::register_converter(
        id, &make_convert_sc12_item32_le_1_to_fc32_1, PRIORITY_SIMD);

    id.output_format = "sc16";
    id.input_format  = "sc12_item32_le";
    uhd::convert::register_converter(
        id, &make_convert_sc12_item32_le_1_to_sc16_1, PRIORITY_SIMD);
}