1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
//
// Copyright 2017 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <tmmintrin.h>
#include "convert_pack_sc12.hpp"
/*
* Shuffle Orderings - Single 128-bit SSE register
*
* 16-bit interleaved I/Q
* ---------------------------------------
* | Q3 | I3 | Q2 | I2 | Q1 | I1 | Q0 | I0 | Input
* ---------------------------------------
* | 127 0 |
*
*
* 12-bit deinterleaved unpacked I/Q
* ---------------------------------------
* | I3 | I2 | I1 | I0 | Q3 | Q2 | Q1 | Q0 | Shuffle-1
* ---------------------------------------
* | High bit aligned | 4-bit >> offset |
*
*
* 12-bit interleaved packed I/Q
* ---------------------------------------
* |I0|Q0|I1|Q1|I2|Q2|I3|Q3| | Shuffle-2 | Shuffle-3
* ---------------------------------------
* | 127 32 | 31 Empty 0 |
*
*
* 12-bit packed I/Q byteswapped
* -----------------------
* | I0 | Q0 | I1 | 0
* |-----------------------|
* | I1 | Q1 | I2 | Q2 | Output
* |-----------------------|
* | Q2 | I3 | Q3 |
* |-----------------------|
* | Unused | 3
* -----------------------
* 31 0
*/
#define SC12_SHIFT_MASK 0xfff0fff0, 0xfff0fff0, 0x0fff0fff, 0x0fff0fff
#define SC12_PACK_SHUFFLE1 13,12,9,8,5,4,1,0,15,14,11,10,7,6,3,2
#define SC12_PACK_SHUFFLE2 9,8,0,11,10,2,13,12,4,15,14,6,0,0,0,0
#define SC12_PACK_SHUFFLE3 8,1,8,8,3,8,8,5,8,8,7,8,8,8,8,8
template <typename type>
inline void convert_star_4_to_sc12_item32_3
(
const std::complex<type> *in,
item32_sc12_3x &output,
const double scalar,
typename std::enable_if<std::is_same<type, float>::value>::type* = NULL
)
{
__m128 m0, m1, m2;
m0 = _mm_set1_ps(scalar);
m1 = _mm_loadu_ps((const float *) &in[0]);
m2 = _mm_loadu_ps((const float *) &in[2]);
m1 = _mm_mul_ps(m1, m0);
m2 = _mm_mul_ps(m2, m0);
m0 = _mm_shuffle_ps(m1, m2, _MM_SHUFFLE(2, 0, 2, 0));
m1 = _mm_shuffle_ps(m1, m2, _MM_SHUFFLE(3, 1, 3, 1));
__m128i m3, m4, m5, m6, m7;
m3 = _mm_set_epi32(SC12_SHIFT_MASK);
m4 = _mm_set_epi8(SC12_PACK_SHUFFLE2);
m5 = _mm_set_epi8(SC12_PACK_SHUFFLE3);
m6 = _mm_cvtps_epi32(m0);
m7 = _mm_cvtps_epi32(m1);
m6 = _mm_slli_epi32(m6, 4);
m6 = _mm_packs_epi32(m7, m6);
m6 = _mm_and_si128(m6, m3);
m7 = _mm_move_epi64(m6);
m6 = _mm_shuffle_epi8(m6, m4);
m7 = _mm_shuffle_epi8(m7, m5);
m6 = _mm_or_si128(m6, m7);
m6 = _mm_shuffle_epi32(m6, _MM_SHUFFLE(0, 1, 2, 3));
_mm_storeu_si128((__m128i*) &output, m6);
}
template <typename type>
static void convert_star_4_to_sc12_item32_3
(
const std::complex<type> *in,
item32_sc12_3x &output,
const double,
typename std::enable_if<std::is_same<type, short>::value>::type* = NULL
)
{
__m128i m0, m1, m2, m3, m4, m5;
m0 = _mm_set_epi32(SC12_SHIFT_MASK);
m1 = _mm_set_epi8(SC12_PACK_SHUFFLE1);
m2 = _mm_set_epi8(SC12_PACK_SHUFFLE2);
m3 = _mm_set_epi8(SC12_PACK_SHUFFLE3);
m4 = _mm_loadu_si128((__m128i*) in);
m4 = _mm_shuffle_epi8(m4, m1);
m5 = _mm_srli_epi16(m4, 4);
m4 = _mm_shuffle_epi32(m4, _MM_SHUFFLE(0, 0, 3, 2));
m4 = _mm_unpacklo_epi64(m5, m4);
m4 = _mm_and_si128(m4, m0);
m5 = _mm_move_epi64(m4);
m4 = _mm_shuffle_epi8(m4, m2);
m5 = _mm_shuffle_epi8(m5, m3);
m3 = _mm_or_si128(m4, m5);
m3 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(0, 1, 2, 3));
_mm_storeu_si128((__m128i*) &output, m3);
}
template <typename type, towire32_type towire>
struct convert_star_1_to_sc12_item32_2 : public converter
{
convert_star_1_to_sc12_item32_2(void):_scalar(0.0)
{
}
void set_scalar(const double scalar)
{
_scalar = scalar;
}
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps)
{
const std::complex<type> *input = reinterpret_cast<const std::complex<type> *>(inputs[0]);
const size_t head_samps = size_t(outputs[0]) & 0x3;
int enable;
size_t rewind = 0;
switch(head_samps)
{
case 0: break;
case 1: rewind = 9; break;
case 2: rewind = 6; break;
case 3: rewind = 3; break;
}
item32_sc12_3x *output = reinterpret_cast<item32_sc12_3x *>(size_t(outputs[0]) - rewind);
//helper variables
size_t i = 0, o = 0;
//handle the head case
switch (head_samps)
{
case 0:
break; //no head
case 1:
enable = CONVERT12_LINE2;
convert_star_4_to_sc12_item32_3<type, towire>(0, 0, 0, input[0], enable, output[o++], _scalar);
break;
case 2:
enable = CONVERT12_LINE2 | CONVERT12_LINE1;
convert_star_4_to_sc12_item32_3<type, towire>(0, 0, input[0], input[1], enable, output[o++], _scalar);
break;
case 3:
enable = CONVERT12_LINE2 | CONVERT12_LINE1 | CONVERT12_LINE0;
convert_star_4_to_sc12_item32_3<type, towire>(0, input[0], input[1], input[2], enable, output[o++], _scalar);
break;
}
i += head_samps;
// SSE packed write output is 16 bytes which overwrites the 12-bit
// packed struct by 4 bytes. There is no concern if there are
// subsequent samples to be converted (writes will simply happen
// twice). So set the conversion loop to force a tail case on the
// final 4 or fewer samples.
while (i+4 < nsamps)
{
convert_star_4_to_sc12_item32_3<type>(&input[i], output[o], _scalar);
o++; i += 4;
}
//handle the tail case
const size_t tail_samps = nsamps - i;
switch (tail_samps)
{
case 0:
break; //no tail
case 1:
enable = CONVERT12_LINE0;
convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], 0, 0, 0, enable, output[o], _scalar);
break;
case 2:
enable = CONVERT12_LINE0 | CONVERT12_LINE1;
convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], input[i+1], 0, 0, enable, output[o], _scalar);
break;
case 3:
enable = CONVERT12_LINE0 | CONVERT12_LINE1 | CONVERT12_LINE2;
convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], input[i+1], input[i+2], 0, enable, output[o], _scalar);
break;
case 4:
enable = CONVERT12_LINE_ALL;
convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], input[i+1], input[i+2], input[i+3], enable, output[o], _scalar);
break;
}
}
double _scalar;
};
static converter::sptr make_convert_fc32_1_to_sc12_item32_le_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_2<float, uhd::wtohx>());
}
static converter::sptr make_convert_sc16_1_to_sc12_item32_le_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_2<short, uhd::wtohx>());
}
UHD_STATIC_BLOCK(register_sse_pack_sc12)
{
uhd::convert::id_type id;
id.num_inputs = 1;
id.num_outputs = 1;
id.input_format = "fc32";
id.output_format = "sc12_item32_le";
uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_le_1, PRIORITY_SIMD);
id.input_format = "sc16";
id.output_format = "sc12_item32_le";
uhd::convert::register_converter(id, &make_convert_sc16_1_to_sc12_item32_le_1, PRIORITY_SIMD);
}
|