1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
//
// Copyright 2012-2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <emmintrin.h>
using namespace uhd::convert;
static const __m128i zeroi = _mm_setzero_si128();
UHD_INLINE void unpack_sc32_8x(const __m128i& in,
__m128d& out0,
__m128d& out1,
__m128d& out2,
__m128d& out3,
__m128d& out4,
__m128d& out5,
__m128d& out6,
__m128d& out7,
const __m128d& scalar)
{
const int shuf = _MM_SHUFFLE(1, 0, 3, 2);
__m128i tmp;
const __m128i tmplo = _mm_unpacklo_epi8(zeroi, in); /* value in upper 8 bits */
tmp = _mm_unpacklo_epi16(zeroi, tmplo); /* value in upper 16 bits */
out0 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar);
tmp = _mm_shuffle_epi32(tmp, shuf);
out1 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar);
tmp = _mm_unpackhi_epi16(zeroi, tmplo);
out2 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar);
tmp = _mm_shuffle_epi32(tmp, shuf);
out3 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar);
const __m128i tmphi = _mm_unpackhi_epi8(zeroi, in);
tmp = _mm_unpacklo_epi16(zeroi, tmphi);
out4 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar);
tmp = _mm_shuffle_epi32(tmp, shuf);
out5 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar);
tmp = _mm_unpackhi_epi16(zeroi, tmphi);
out6 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar);
tmp = _mm_shuffle_epi32(tmp, shuf);
out7 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar);
}
DECLARE_CONVERTER(sc8_item32_be, 1, fc64, 1, PRIORITY_SIMD)
{
const item32_t* input = reinterpret_cast<const item32_t*>(size_t(inputs[0]) & ~0x3);
fc64_t* output = reinterpret_cast<fc64_t*>(outputs[0]);
const __m128d scalar = _mm_set1_pd(scale_factor / (1 << 24));
size_t i = 0, j = 0;
fc32_t dummy;
size_t num_samps = nsamps;
if ((size_t(inputs[0]) & 0x3) != 0) {
item32_sc8_to_xx<uhd::ntohx>(input++, output++, 1, scale_factor);
num_samps--;
}
#define convert_sc8_item32_1_to_fc64_1_bswap_guts(_al_) \
for (; j + 7 < num_samps; j += 8, i += 4) { \
/* load from input */ \
__m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i*>(input + i)); \
\
/* unpack */ \
__m128d tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; \
unpack_sc32_8x(tmpi, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, scalar); \
\
/* store to output */ \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 0), tmp0); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 1), tmp1); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 2), tmp2); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 3), tmp3); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 4), tmp4); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 5), tmp5); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 6), tmp6); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 7), tmp7); \
}
// dispatch according to alignment
if ((size_t(output) & 0xf) == 0) {
convert_sc8_item32_1_to_fc64_1_bswap_guts(_)
} else {
convert_sc8_item32_1_to_fc64_1_bswap_guts(u_)
}
// convert remainder
item32_sc8_to_xx<uhd::ntohx>(input + i, output + j, num_samps - j, scale_factor);
}
DECLARE_CONVERTER(sc8_item32_le, 1, fc64, 1, PRIORITY_SIMD)
{
const item32_t* input = reinterpret_cast<const item32_t*>(size_t(inputs[0]) & ~0x3);
fc64_t* output = reinterpret_cast<fc64_t*>(outputs[0]);
const __m128d scalar = _mm_set1_pd(scale_factor / (1 << 24));
size_t i = 0, j = 0;
fc32_t dummy;
size_t num_samps = nsamps;
if ((size_t(inputs[0]) & 0x3) != 0) {
item32_sc8_to_xx<uhd::wtohx>(input++, output++, 1, scale_factor);
num_samps--;
}
#define convert_sc8_item32_1_to_fc64_1_nswap_guts(_al_) \
for (; j + 7 < num_samps; j += 8, i += 4) { \
/* load from input */ \
__m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i*>(input + i)); \
\
/* unpack */ \
__m128d tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; \
tmpi = \
_mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); /*byteswap*/ \
unpack_sc32_8x(tmpi, tmp1, tmp0, tmp3, tmp2, tmp5, tmp4, tmp7, tmp6, scalar); \
\
/* store to output */ \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 0), tmp0); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 1), tmp1); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 2), tmp2); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 3), tmp3); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 4), tmp4); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 5), tmp5); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 6), tmp6); \
_mm_store##_al_##pd(reinterpret_cast<double*>(output + j + 7), tmp7); \
}
// dispatch according to alignment
if ((size_t(output) & 0xf) == 0) {
convert_sc8_item32_1_to_fc64_1_nswap_guts(_)
} else {
convert_sc8_item32_1_to_fc64_1_nswap_guts(u_)
}
// convert remainder
item32_sc8_to_xx<uhd::wtohx>(input + i, output + j, num_samps - j, scale_factor);
}
|