1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
//
// Copyright 2012-2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <emmintrin.h>
using namespace uhd::convert;
static const __m128i zeroi = _mm_setzero_si128();
template <const int shuf>
UHD_INLINE void unpack_sc32_4x(
const __m128i &in,
__m128 &out0, __m128 &out1,
__m128 &out2, __m128 &out3,
const __m128 &scalar
){
const __m128i tmplo = _mm_unpacklo_epi8(zeroi, in); /* value in upper 8 bits */
__m128i tmp0 = _mm_shuffle_epi32(_mm_unpacklo_epi16(zeroi, tmplo), shuf); /* value in upper 16 bits */
__m128i tmp1 = _mm_shuffle_epi32(_mm_unpackhi_epi16(zeroi, tmplo), shuf);
out0 = _mm_mul_ps(_mm_cvtepi32_ps(tmp0), scalar);
out1 = _mm_mul_ps(_mm_cvtepi32_ps(tmp1), scalar);
const __m128i tmphi = _mm_unpackhi_epi8(zeroi, in);
__m128i tmp2 = _mm_shuffle_epi32(_mm_unpacklo_epi16(zeroi, tmphi), shuf);
__m128i tmp3 = _mm_shuffle_epi32(_mm_unpackhi_epi16(zeroi, tmphi), shuf);
out2 = _mm_mul_ps(_mm_cvtepi32_ps(tmp2), scalar);
out3 = _mm_mul_ps(_mm_cvtepi32_ps(tmp3), scalar);
}
DECLARE_CONVERTER(sc8_item32_be, 1, fc32, 1, PRIORITY_SIMD){
const item32_t *input = reinterpret_cast<const item32_t *>(size_t(inputs[0]) & ~0x3);
fc32_t *output = reinterpret_cast<fc32_t *>(outputs[0]);
const __m128 scalar = _mm_set_ps1(float(scale_factor)/(1 << 24));
const int shuf = _MM_SHUFFLE(3, 2, 1, 0);
size_t i = 0, j = 0;
fc32_t dummy;
size_t num_samps = nsamps;
if ((size_t(inputs[0]) & 0x3) != 0){
item32_sc8_to_xx<uhd::ntohx>(input++, output++, 1, scale_factor);
num_samps--;
}
#define convert_sc8_item32_1_to_fc32_1_bswap_guts(_al_) \
for (; j+7 < num_samps; j+=8, i+=4){ \
/* load from input */ \
__m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i *>(input+i)); \
\
/* unpack + swap 8-bit pairs */ \
__m128 tmp0, tmp1, tmp2, tmp3; \
unpack_sc32_4x<shuf>(tmpi, tmp0, tmp1, tmp2, tmp3, scalar); \
\
/* store to output */ \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+j+0), tmp0); \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+j+2), tmp1); \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+j+4), tmp2); \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+j+6), tmp3); \
}
//dispatch according to alignment
if ((size_t(output) & 0xf) == 0){
convert_sc8_item32_1_to_fc32_1_bswap_guts(_)
}
else{
convert_sc8_item32_1_to_fc32_1_bswap_guts(u_)
}
//convert remainder
item32_sc8_to_xx<uhd::ntohx>(input+i, output+j, num_samps-j, scale_factor);
}
DECLARE_CONVERTER(sc8_item32_le, 1, fc32, 1, PRIORITY_SIMD){
const item32_t *input = reinterpret_cast<const item32_t *>(size_t(inputs[0]) & ~0x3);
fc32_t *output = reinterpret_cast<fc32_t *>(outputs[0]);
const __m128 scalar = _mm_set_ps1(float(scale_factor)/(1 << 24));
const int shuf = _MM_SHUFFLE(0, 1, 2, 3);
size_t i = 0, j = 0;
fc32_t dummy;
size_t num_samps = nsamps;
if ((size_t(inputs[0]) & 0x3) != 0){
item32_sc8_to_xx<uhd::wtohx>(input++, output++, 1, scale_factor);
num_samps--;
}
#define convert_sc8_item32_1_to_fc32_1_nswap_guts(_al_) \
for (; j+7 < num_samps; j+=8, i+=4){ \
/* load from input */ \
__m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i *>(input+i)); \
\
/* unpack + swap 8-bit pairs */ \
__m128 tmp0, tmp1, tmp2, tmp3; \
unpack_sc32_4x<shuf>(tmpi, tmp0, tmp1, tmp2, tmp3, scalar); \
\
/* store to output */ \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+j+0), tmp0); \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+j+2), tmp1); \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+j+4), tmp2); \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+j+6), tmp3); \
}
//dispatch according to alignment
if ((size_t(output) & 0xf) == 0){
convert_sc8_item32_1_to_fc32_1_nswap_guts(_)
}
else{
convert_sc8_item32_1_to_fc32_1_nswap_guts(u_)
}
//convert remainder
item32_sc8_to_xx<uhd::wtohx>(input+i, output+j, num_samps-j, scale_factor);
}
|