aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/convert/sse2_sc16_to_fc64.cpp
blob: 7f22fd07f4aebc9dab15da5a3f5df790c1283509 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
//
// Copyright 2011-2012 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <emmintrin.h>

using namespace uhd::convert;

DECLARE_CONVERTER(sc16_item32_le, 1, fc64, 1, PRIORITY_SIMD){
    const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
    fc64_t *output = reinterpret_cast<fc64_t *>(outputs[0]);

    const __m128d scalar = _mm_set1_pd(scale_factor/(1 << 16));
    const __m128i zeroi = _mm_setzero_si128();

    #define convert_item32_1_to_fc64_1_nswap_guts(_al_)                 \
    for (; i+3 < nsamps; i+=4){                                         \
        /* load from input */                                           \
        __m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i *>(input+i)); \
                                                                        \
        /* unpack + swap 16-bit pairs */                                \
        tmpi = _mm_shufflelo_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1));      \
        tmpi = _mm_shufflehi_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1));      \
        __m128i tmpilo = _mm_unpacklo_epi16(zeroi, tmpi); /* value in upper 16 bits */ \
        __m128i tmpihi = _mm_unpackhi_epi16(zeroi, tmpi);               \
                                                                        \
        /* convert and scale */                                         \
        __m128d tmp0 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar);     \
        tmpilo = _mm_unpackhi_epi64(tmpilo, zeroi);                     \
        __m128d tmp1 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar);     \
        __m128d tmp2 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar);     \
        tmpihi = _mm_unpackhi_epi64(tmpihi, zeroi);                     \
        __m128d tmp3 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar);     \
                                                                        \
        /* store to output */                                           \
        _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+i+0), tmp0); \
        _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+i+1), tmp1); \
        _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+i+2), tmp2); \
        _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+i+3), tmp3); \
    }                                                                   \

    size_t i = 0;

    //dispatch according to alignment
    if ((size_t(output) & 0xf) == 0){
        convert_item32_1_to_fc64_1_nswap_guts(_)
    }
    else{
        convert_item32_1_to_fc64_1_nswap_guts(u_)
    }

    //convert remainder
    item32_sc16_to_xx<uhd::htowx>(input+i, output+i, nsamps-i, scale_factor);
}

DECLARE_CONVERTER(sc16_item32_be, 1, fc64, 1, PRIORITY_SIMD){
    const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
    fc64_t *output = reinterpret_cast<fc64_t *>(outputs[0]);

    const __m128d scalar = _mm_set1_pd(scale_factor/(1 << 16));
    const __m128i zeroi = _mm_setzero_si128();

    #define convert_item32_1_to_fc64_1_bswap_guts(_al_)                 \
    for (; i+3 < nsamps; i+=4){                                         \
        /* load from input */                                           \
        __m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i *>(input+i)); \
                                                                        \
        /* byteswap + unpack -> byteswap 16 bit words */                \
        tmpi = _mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); \
        __m128i tmpilo = _mm_unpacklo_epi16(zeroi, tmpi); /* value in upper 16 bits */ \
        __m128i tmpihi = _mm_unpackhi_epi16(zeroi, tmpi);               \
                                                                        \
        /* convert and scale */                                         \
        __m128d tmp0 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar);     \
        tmpilo = _mm_unpackhi_epi64(tmpilo, zeroi);                     \
        __m128d tmp1 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar);     \
        __m128d tmp2 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar);     \
        tmpihi = _mm_unpackhi_epi64(tmpihi, zeroi);                     \
        __m128d tmp3 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar);     \
                                                                        \
        /* store to output */                                           \
        _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+i+0), tmp0); \
        _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+i+1), tmp1); \
        _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+i+2), tmp2); \
        _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+i+3), tmp3); \
    }                                                                   \

    size_t i = 0;

    //dispatch according to alignment
    if ((size_t(output) & 0xf) == 0){
        convert_item32_1_to_fc64_1_bswap_guts(_)
    }
    else{
        convert_item32_1_to_fc64_1_bswap_guts(u_)
    }

    //convert remainder
    item32_sc16_to_xx<uhd::htonx>(input+i, output+i, nsamps-i, scale_factor);
}