1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
//
// Copyright 2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <emmintrin.h>
using namespace uhd::convert;
UHD_INLINE __m128i pack_sc8_item32_4x(
const __m128i &in0, const __m128i &in1,
const __m128i &in2, const __m128i &in3
){
const __m128i lo = _mm_packs_epi32(in0, in1);
const __m128i hi = _mm_packs_epi32(in2, in3);
return _mm_packs_epi16(lo, hi);
}
UHD_INLINE __m128i pack_sc32_4x(
const __m128d &lo, const __m128d &hi,
const __m128d &scalar
){
const __m128i tmpi_lo = _mm_cvttpd_epi32(_mm_mul_pd(hi, scalar));
const __m128i tmpi_hi = _mm_cvttpd_epi32(_mm_mul_pd(lo, scalar));
return _mm_unpacklo_epi64(tmpi_lo, tmpi_hi);
}
DECLARE_CONVERTER(fc64, 1, sc8_item32_be, 1, PRIORITY_SIMD){
const fc64_t *input = reinterpret_cast<const fc64_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
const __m128d scalar = _mm_set1_pd(scale_factor);
#define convert_fc64_1_to_sc8_item32_1_bswap_guts(_al_) \
for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \
/* load from input */ \
__m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+0)); \
__m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+1)); \
__m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+2)); \
__m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+3)); \
__m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+4)); \
__m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+5)); \
__m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+6)); \
__m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+7)); \
\
/* interleave */ \
const __m128i tmpi = pack_sc8_item32_4x( \
pack_sc32_4x(tmp0, tmp1, scalar), \
pack_sc32_4x(tmp2, tmp3, scalar), \
pack_sc32_4x(tmp4, tmp5, scalar), \
pack_sc32_4x(tmp6, tmp7, scalar) \
); \
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \
} \
size_t i = 0;
//dispatch according to alignment
if ((size_t(input) & 0xf) == 0){
convert_fc64_1_to_sc8_item32_1_bswap_guts(_)
}
else{
convert_fc64_1_to_sc8_item32_1_bswap_guts(u_)
}
//convert remainder
xx_to_item32_sc8<uhd::htonx>(input+i, output+(i/2), nsamps-i, scale_factor);
}
DECLARE_CONVERTER(fc64, 1, sc8_item32_le, 1, PRIORITY_SIMD){
const fc64_t *input = reinterpret_cast<const fc64_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
const __m128d scalar = _mm_set1_pd(scale_factor);
#define convert_fc64_1_to_sc8_item32_1_nswap_guts(_al_) \
for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \
/* load from input */ \
__m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+0)); \
__m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+1)); \
__m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+2)); \
__m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+3)); \
__m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+4)); \
__m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+5)); \
__m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+6)); \
__m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+7)); \
\
/* interleave */ \
__m128i tmpi = pack_sc8_item32_4x( \
pack_sc32_4x(tmp1, tmp0, scalar), \
pack_sc32_4x(tmp3, tmp2, scalar), \
pack_sc32_4x(tmp5, tmp4, scalar), \
pack_sc32_4x(tmp7, tmp6, scalar) \
); \
tmpi = _mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); /*byteswap*/\
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \
} \
size_t i = 0;
//dispatch according to alignment
if ((size_t(input) & 0xf) == 0){
convert_fc64_1_to_sc8_item32_1_nswap_guts(_)
}
else{
convert_fc64_1_to_sc8_item32_1_nswap_guts(u_)
}
//convert remainder
xx_to_item32_sc8<uhd::htowx>(input+i, output+(i/2), nsamps-i, scale_factor);
}
|