1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
#!/usr/bin/env python
#
# Copyright 2011 Ettus Research LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
TMPL_HEADER = """
#import time
/***********************************************************************
* This file was generated by $file on $time.strftime("%c")
**********************************************************************/
\#include "convert_common.hpp"
\#include <uhd/utils/byteswap.hpp>
using namespace uhd::convert;
"""
TMPL_CONV_GEN2_ITEM32 = """
DECLARE_CONVERTER(item32, 1, sc16_item32_$(end), 1, PRIORITY_GENERAL){
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
if (scale_factor == 0){} //avoids unused warning
for (size_t i = 0; i < nsamps; i++){
output[i] = $(to_wire)(input[i]);
}
}
DECLARE_CONVERTER(sc16_item32_$(end), 1, item32, 1, PRIORITY_GENERAL){
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
if (scale_factor == 0){} //avoids unused warning
for (size_t i = 0; i < nsamps; i++){
output[i] = $(to_host)(input[i]);
}
}
"""
TMPL_CONV_GEN2_COMPLEX = """
DECLARE_CONVERTER($(cpu_type), 1, sc16_item32_$(end), 1, PRIORITY_GENERAL){
const $(cpu_type)_t *input = reinterpret_cast<const $(cpu_type)_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
for (size_t i = 0; i < nsamps; i++){
output[i] = $(to_wire)($(cpu_type)_to_item32_sc16(input[i], scale_factor));
}
}
DECLARE_CONVERTER(sc16_item32_$(end), 1, $(cpu_type), 1, PRIORITY_GENERAL){
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
$(cpu_type)_t *output = reinterpret_cast<$(cpu_type)_t *>(outputs[0]);
for (size_t i = 0; i < nsamps; i++){
output[i] = item32_sc16_to_$(cpu_type)($(to_host)(input[i]), scale_factor);
}
}
DECLARE_CONVERTER(sc8_item32_$(end), 1, $(cpu_type), 1, PRIORITY_GENERAL){
if (nsamps == 0) return; //otherwise segfault
const item32_t *input = reinterpret_cast<const item32_t *>(size_t(inputs[0]) & ~0x3);
$(cpu_type)_t *output = reinterpret_cast<$(cpu_type)_t *>(outputs[0]);
$(cpu_type)_t dummy;
size_t num_samps = nsamps;
if ((size_t(inputs[0]) & 0x3) != 0){
const item32_t item0 = $(to_host)(*input++);
item32_sc8_to_$(cpu_type)(item0, dummy, *output++, scale_factor);
num_samps--;
}
const size_t num_pairs = num_samps/2;
for (size_t i = 0, j = 0; i < num_pairs; i++, j+=2){
const item32_t item_i = $(to_host)(input[i]);
item32_sc8_to_$(cpu_type)(item_i, output[j], output[j+1], scale_factor);
}
if (num_samps != num_pairs*2){
const item32_t item_n = $(to_host)(input[num_pairs]);
item32_sc8_to_$(cpu_type)(item_n, output[num_samps-1], dummy, scale_factor);
}
}
"""
TMPL_CONV_USRP1_COMPLEX = """
DECLARE_CONVERTER($(cpu_type), $(width), sc16_item16_usrp1, 1, PRIORITY_GENERAL){
#for $w in range($width)
const $(cpu_type)_t *input$(w) = reinterpret_cast<const $(cpu_type)_t *>(inputs[$(w)]);
#end for
boost::uint16_t *output = reinterpret_cast<boost::uint16_t *>(outputs[0]);
if (scale_factor == 0){} //avoids unused warning
for (size_t i = 0, j = 0; i < nsamps; i++){
#for $w in range($width)
output[j++] = $(to_wire)(boost::int16_t(input$(w)[i].real()$(do_scale)));
output[j++] = $(to_wire)(boost::int16_t(input$(w)[i].imag()$(do_scale)));
#end for
}
}
DECLARE_CONVERTER(sc16_item16_usrp1, 1, $(cpu_type), $(width), PRIORITY_GENERAL){
const boost::uint16_t *input = reinterpret_cast<const boost::uint16_t *>(inputs[0]);
#for $w in range($width)
$(cpu_type)_t *output$(w) = reinterpret_cast<$(cpu_type)_t *>(outputs[$(w)]);
#end for
if (scale_factor == 0){} //avoids unused warning
for (size_t i = 0, j = 0; i < nsamps; i++){
#for $w in range($width)
output$(w)[i] = $(cpu_type)_t(
boost::int16_t($(to_host)(input[j+0]))$(do_scale),
boost::int16_t($(to_host)(input[j+1]))$(do_scale)
);
j += 2;
#end for
}
}
DECLARE_CONVERTER(sc8_item16_usrp1, 1, $(cpu_type), $(width), PRIORITY_GENERAL){
const boost::uint16_t *input = reinterpret_cast<const boost::uint16_t *>(inputs[0]);
#for $w in range($width)
$(cpu_type)_t *output$(w) = reinterpret_cast<$(cpu_type)_t *>(outputs[$(w)]);
#end for
if (scale_factor == 0){} //avoids unused warning
for (size_t i = 0, j = 0; i < nsamps; i++){
#for $w in range($width)
{
const boost::uint16_t num = $(to_host)(input[j++]);
output$(w)[i] = $(cpu_type)_t(
boost::int8_t(num)$(do_scale),
boost::int8_t(num >> 8)$(do_scale)
);
}
#end for
}
}
"""
def parse_tmpl(_tmpl_text, **kwargs):
from Cheetah.Template import Template
return str(Template(_tmpl_text, kwargs))
if __name__ == '__main__':
import sys, os
file = os.path.basename(__file__)
output = parse_tmpl(TMPL_HEADER, file=file)
#generate complex converters for all gen2 platforms
for end, to_host, to_wire in (
('be', 'uhd::ntohx', 'uhd::htonx'),
('le', 'uhd::wtohx', 'uhd::htowx'),
):
for cpu_type in 'fc64', 'fc32', 'sc16':
output += parse_tmpl(
TMPL_CONV_GEN2_COMPLEX,
end=end, to_host=to_host, to_wire=to_wire, cpu_type=cpu_type
)
output += parse_tmpl(
TMPL_CONV_GEN2_ITEM32,
end=end, to_host=to_host, to_wire=to_wire
)
#generate complex converters for usrp1 format
for width in 1, 2, 4:
for cpu_type, do_scale in (
('fc64', '*scale_factor'),
('fc32', '*float(scale_factor)'),
('sc16', ''),
):
output += parse_tmpl(
TMPL_CONV_USRP1_COMPLEX,
width=width, to_host='uhd::wtohx', to_wire='uhd::htowx',
cpu_type=cpu_type, do_scale=do_scale
)
open(sys.argv[1], 'w').write(output)
|