1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
#!/usr/bin/env python3
#
# Copyright 2011-2012 Ettus Research LLC
# Copyright 2018 Ettus Research, a National Instruments Company
#
# SPDX-License-Identifier: GPL-3.0-or-later
#
"""
Auto-Generator for generic converters
"""
TMPL_HEADER = """
<%
import time
%>
/***********************************************************************
* This file was generated by ${file} on ${time.strftime("%c")}
**********************************************************************/
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <algorithm>
#include <cstring>
using namespace uhd::convert;
// item32 -> item32: Just a memcpy. No scaling possible.
DECLARE_CONVERTER(item32, 1, item32, 1, PRIORITY_GENERAL) {
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
memcpy(output, input, nsamps * sizeof(item32_t));
}
"""
TMPL_CONV_CHDR_SC16_TO_FP = """
DECLARE_CONVERTER({fctype}, 1, sc16_chdr, 1, PRIORITY_GENERAL) {{
// Note: We convert I and Q separately, because there's no optimized
// constructor to create a complex<{fptype}> from a complex<int16_t>. This
// means we need to multiply nsamps by 2
const {fptype}* input = reinterpret_cast<const {fptype}*>(inputs[0]);
int16_t* output = reinterpret_cast<int16_t*>(outputs[0]);
for (size_t i = 0; i < nsamps * 2; i += 2) {{
output[i] = clamp<int16_t>(input[i] * {fptype}(scale_factor));
output[i+1] = clamp<int16_t>(input[i + 1] * {fptype}(scale_factor));
}}
}}
DECLARE_CONVERTER(sc16_chdr, 1, {fctype}, 1, PRIORITY_GENERAL) {{
// Note: We convert I and Q separately, because there's no optimized
// constructor to create a complex<{fptype}> from a complex<int16_t>. This
// means we need to multiply nsamps by 2
const int16_t* input = reinterpret_cast<const int16_t*>(inputs[0]);
{fptype}* output = reinterpret_cast<{fptype}*>(outputs[0]);
for (size_t i = 0; i < nsamps * 2; i += 2) {{
output[i] = static_cast<{fptype}>(input[i]) * {fptype}(scale_factor);
output[i+1] = static_cast<{fptype}>(input[i+1]) * {fptype}(scale_factor);
}}
}}
"""
# For CHDR converters, all converters where the input and output type are the
# same can be done by a memcpy, because we can do the endianness adaptation in
# the FPGA.
TMPL_CONV_CHDR_MEMCPY = """
DECLARE_CONVERTER({in_type}, 1, {out_type}, 1, PRIORITY_GENERAL) {{
const {ptr_type} *input = reinterpret_cast<const {ptr_type} *>(inputs[0]);
{ptr_type}* output = reinterpret_cast<{ptr_type}*>(outputs[0]);
// Benchmark shows that copy_n can be significantly slower in some cases
//std::copy_n(input, nsamps, output);
memcpy(output, input, sizeof({ptr_type}) * nsamps);
}}
"""
# Some 32-bit types converters are also defined in convert_item32.cpp to
# take care of quirks such as I/Q ordering on the wire etc.
TMPL_CONV_ITEM32 = """
DECLARE_CONVERTER({in_type}, 1, {out_type}, 1, PRIORITY_GENERAL) {{
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
for (size_t i = 0; i < nsamps; i++) {{
output[i] = {to_wire_or_host}(input[i]);
}}
}}
"""
# 64-bit data types are two consecutive item32 items
TMPL_CONV_ITEM64 = """
DECLARE_CONVERTER({in_type}, 1, {out_type}, 1, PRIORITY_GENERAL) {{
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
// An item64 is two item32_t's
for (size_t i = 0; i < nsamps * 2; i++) {{
output[i] = {to_wire_or_host}(input[i]);
}}
}}
"""
TMPL_CONV_U8S8 = """
DECLARE_CONVERTER({us8}, 1, {us8}_item32_{end}, 1, PRIORITY_GENERAL) {{
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
// 1) Copy all the 4-byte tuples
size_t n_words = nsamps / 4;
for (size_t i = 0; i < n_words; i++) {{
output[i] = {to_wire}(input[i]);
}}
// 2) If nsamps was not a multiple of 4, copy the rest by hand
size_t bytes_left = nsamps % 4;
if (bytes_left) {{
const {us8}_t *last_input_word = reinterpret_cast<const {us8}_t *>(&input[n_words]);
{us8}_t *last_output_word = reinterpret_cast<{us8}_t *>(&output[n_words]);
for (size_t k = 0; k < bytes_left; k++) {{
last_output_word[k] = last_input_word[k];
}}
output[n_words] = {to_wire}(output[n_words]);
}}
}}
DECLARE_CONVERTER({us8}_item32_{end}, 1, {us8}, 1, PRIORITY_GENERAL) {{
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
// 1) Copy all the 4-byte tuples
size_t n_words = nsamps / 4;
for (size_t i = 0; i < n_words; i++) {{
output[i] = {to_host}(input[i]);
}}
// 2) If nsamps was not a multiple of 4, copy the rest by hand
size_t bytes_left = nsamps % 4;
if (bytes_left) {{
item32_t last_input_word = {to_host}(input[n_words]);
const {us8}_t *last_input_word_ptr = reinterpret_cast<const {us8}_t *>(&last_input_word);
{us8}_t *last_output_word = reinterpret_cast<{us8}_t *>(&output[n_words]);
for (size_t k = 0; k < bytes_left; k++) {{
last_output_word[k] = last_input_word_ptr[k];
}}
}}
}}
"""
TMPL_CONV_S16 = """
DECLARE_CONVERTER(s16, 1, s16_item32_{end}, 1, PRIORITY_GENERAL) {{
const uint16_t *input = reinterpret_cast<const uint16_t *>(inputs[0]);
uint16_t *output = reinterpret_cast<uint16_t *>(outputs[0]);
for (size_t i = 0; i < nsamps; i++) {{
output[i] = {to_wire}(input[i]);
}}
}}
DECLARE_CONVERTER(s16_item32_{end}, 1, s16, 1, PRIORITY_GENERAL) {{
const uint16_t *input = reinterpret_cast<const uint16_t *>(inputs[0]);
uint16_t *output = reinterpret_cast<uint16_t *>(outputs[0]);
for (size_t i = 0; i < nsamps; i++) {{
output[i] = {to_host}(input[i]);
}}
}}
"""
TMPL_CONV_USRP1_COMPLEX = """
DECLARE_CONVERTER(${cpu_type}, ${width}, sc16_item16_usrp1, 1, PRIORITY_GENERAL){
% for w in range(width):
const ${cpu_type}_t *input${w} = reinterpret_cast<const ${cpu_type}_t *>(inputs[${w}]);
% endfor
uint16_t *output = reinterpret_cast<uint16_t *>(outputs[0]);
for (size_t i = 0, j = 0; i < nsamps; i++){
% for w in range(width):
output[j++] = ${to_wire}(uint16_t(int16_t(input${w}[i].real()${do_scale})));
output[j++] = ${to_wire}(uint16_t(int16_t(input${w}[i].imag()${do_scale})));
% endfor
}
}
DECLARE_CONVERTER(sc16_item16_usrp1, 1, ${cpu_type}, ${width}, PRIORITY_GENERAL){
const uint16_t *input = reinterpret_cast<const uint16_t *>(inputs[0]);
% for w in range(width):
${cpu_type}_t *output${w} = reinterpret_cast<${cpu_type}_t *>(outputs[${w}]);
% endfor
for (size_t i = 0, j = 0; i < nsamps; i++){
% for w in range(width):
output${w}[i] = ${cpu_type}_t(
int16_t(${to_host}(input[j+0]))${do_scale},
int16_t(${to_host}(input[j+1]))${do_scale}
);
j += 2;
% endfor
}
}
DECLARE_CONVERTER(sc8_item16_usrp1, 1, ${cpu_type}, ${width}, PRIORITY_GENERAL){
const uint16_t *input = reinterpret_cast<const uint16_t *>(inputs[0]);
% for w in range(width):
${cpu_type}_t *output${w} = reinterpret_cast<${cpu_type}_t *>(outputs[${w}]);
% endfor
for (size_t i = 0, j = 0; i < nsamps; i++){
% for w in range(width):
{
const uint16_t num = ${to_host}(input[j++]);
output${w}[i] = ${cpu_type}_t(
int8_t(num)${do_scale},
int8_t(num >> 8)${do_scale}
);
}
% endfor
}
}
"""
def parse_tmpl(_tmpl_text, **kwargs):
from mako.template import Template
return Template(_tmpl_text).render(**kwargs)
if __name__ == '__main__':
import sys
import os
file = os.path.basename(__file__)
output = parse_tmpl(TMPL_HEADER, file=file)
for fctype, fptype in (
('fc32', 'float'),
('fc64', 'double'),
):
output += TMPL_CONV_CHDR_SC16_TO_FP.format(
fctype=fctype, fptype=fptype)
## Generate CHDR converters
# These guys don't have to worry about endianness
for uhd_type, ptr_type in (
('u8', 'uint8_t'),
('s8', 'int8_t'),
('s16', 'int16_t'),
('f32', 'float'),
('sc8', 'std::complex<int8_t>'),
('sc16', 'std::complex<int16_t>'),
('fc32', 'std::complex<float>'),
('fc64', 'std::complex<double>'),
):
for in_type, out_type in ((uhd_type + '_chdr', uhd_type), (uhd_type, uhd_type + '_chdr')):
output += TMPL_CONV_CHDR_MEMCPY.format(
in_type=in_type,
out_type=out_type,
ptr_type=ptr_type)
## Generate all data types that are exactly
## item32 or multiples thereof:
for end in ('be', 'le'):
host_to_wire = {'be': 'uhd::htonx', 'le': 'uhd::htowx'}[end]
wire_to_host = {'be': 'uhd::ntohx', 'le': 'uhd::wtohx'}[end]
# item32 types (sc16->sc16 is a special case because it defaults
# to Q/I order on the wire:
for in_type, out_type, to_wire_or_host in (
('item32', 'sc16_item32_{end}', host_to_wire),
('sc16_item32_{end}', 'item32', wire_to_host),
('f32', 'f32_item32_{end}', host_to_wire),
('f32_item32_{end}', 'f32', wire_to_host),
):
output += TMPL_CONV_ITEM32.format(
end=end, to_wire_or_host=to_wire_or_host,
in_type=in_type.format(end=end), out_type=out_type.format(end=end)
)
# 2xitem32 types:
for in_type, out_type in (
('fc32', 'fc32_item32_{end}'),
('fc32_item32_{end}', 'fc32'),
):
output += TMPL_CONV_ITEM64.format(
end=end, to_wire_or_host=to_wire_or_host,
in_type=in_type.format(end=end), out_type=out_type.format(end=end)
)
## Real 16-Bit:
for end, to_host, to_wire in (
('be', 'uhd::ntohx', 'uhd::htonx'),
('le', 'uhd::wtohx', 'uhd::htowx'),
):
output += TMPL_CONV_S16.format(
end=end, to_host=to_host, to_wire=to_wire
)
## Real 8-Bit Types:
for us8 in ('u8', 's8'):
for end, to_host, to_wire in (
('be', 'uhd::ntohx', 'uhd::htonx'),
('le', 'uhd::wtohx', 'uhd::htowx'),
):
output += TMPL_CONV_U8S8.format(
us8=us8, end=end, to_host=to_host, to_wire=to_wire
)
#generate complex converters for usrp1 format (requires Cheetah)
for width in 1, 2, 4:
for cpu_type, do_scale in (
('fc64', '*scale_factor'),
('fc32', '*float(scale_factor)'),
('sc16', ''),
):
output += parse_tmpl(
TMPL_CONV_USRP1_COMPLEX,
width=width, to_host='uhd::wtohx', to_wire='uhd::htowx',
cpu_type=cpu_type, do_scale=do_scale
)
open(sys.argv[1], 'w').write(output)
|