aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/convert/convert_with_tables.cpp
blob: 5c924805208bb44e8722e037156628f5d5d0ec9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
//
// Copyright 2011-2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <boost/math/special_functions/round.hpp>
#include <vector>

using namespace uhd::convert;

static const size_t sc16_table_len = size_t(1 << 16);

typedef uint16_t (*tohost16_type)(uint16_t);

/***********************************************************************
 * Implementation for sc16 to sc8 lookup table
 *  - Lookup the real and imaginary parts individually
 **********************************************************************/
template <bool swap> class convert_sc16_1_to_sc8_item32_1 : public converter
{
public:
    convert_sc16_1_to_sc8_item32_1(void) : _table(sc16_table_len) {}

    void set_scalar(const double scalar)
    {
        for (size_t i = 0; i < sc16_table_len; i++) {
            const int16_t val = uint16_t(i);
            _table[i]         = int8_t(boost::math::iround(val * scalar / 32767.));
        }
    }

    void operator()(
        const input_type& inputs, const output_type& outputs, const size_t nsamps)
    {
        const sc16_t* input = reinterpret_cast<const sc16_t*>(inputs[0]);
        item32_t* output    = reinterpret_cast<item32_t*>(outputs[0]);

        const size_t num_pairs = nsamps / 2;
        for (size_t i = 0, j = 0; i < num_pairs; i++, j += 2) {
            output[i] = this->lookup(input[j], input[j + 1]);
        }

        if (nsamps != num_pairs * 2) {
            output[num_pairs] = this->lookup(input[nsamps - 1], 0);
            ;
        }
    }

    item32_t lookup(const sc16_t& in0, const sc16_t& in1)
    {
        if (swap) { // hope this compiles out, its a template constant
            return (item32_t(_table[uint16_t(in1.real())]) << 16)
                   | (item32_t(_table[uint16_t(in1.imag())]) << 24)
                   | (item32_t(_table[uint16_t(in0.real())]) << 0)
                   | (item32_t(_table[uint16_t(in0.imag())]) << 8);
        }
        return (item32_t(_table[uint16_t(in1.real())]) << 8)
               | (item32_t(_table[uint16_t(in1.imag())]) << 0)
               | (item32_t(_table[uint16_t(in0.real())]) << 24)
               | (item32_t(_table[uint16_t(in0.imag())]) << 16);
    }

private:
    std::vector<uint8_t> _table;
};

/***********************************************************************
 * Implementation for sc16 lookup table
 *  - Lookup the real and imaginary parts individually
 **********************************************************************/
template <typename type, tohost16_type tohost, size_t re_shift, size_t im_shift>
class convert_sc16_item32_1_to_fcxx_1 : public converter
{
public:
    convert_sc16_item32_1_to_fcxx_1(void) : _table(sc16_table_len) {}

    void set_scalar(const double scalar)
    {
        for (size_t i = 0; i < sc16_table_len; i++) {
            const uint16_t val = tohost(uint16_t(i & 0xffff));
            _table[i]          = type(int16_t(val) * scalar);
        }
    }

    void operator()(
        const input_type& inputs, const output_type& outputs, const size_t nsamps)
    {
        const item32_t* input      = reinterpret_cast<const item32_t*>(inputs[0]);
        std::complex<type>* output = reinterpret_cast<std::complex<type>*>(outputs[0]);

        for (size_t i = 0; i < nsamps; i++) {
            const item32_t item = input[i];
            output[i]           = std::complex<type>(
                _table[uint16_t(item >> re_shift)], _table[uint16_t(item >> im_shift)]);
        }
    }

private:
    std::vector<type> _table;
};

/***********************************************************************
 * Implementation for sc8 lookup table
 *  - Lookup the real and imaginary parts together
 **********************************************************************/
template <typename type, tohost16_type tohost, size_t lo_shift, size_t hi_shift>
class convert_sc8_item32_1_to_fcxx_1 : public converter
{
public:
    convert_sc8_item32_1_to_fcxx_1(void) : _table(sc16_table_len) {}

    // special case for sc16 type, 32767 undoes float normalization
    static type conv(const int8_t& num, const double scalar)
    {
        if (sizeof(type) == sizeof(s16_t)) {
            return type(boost::math::iround(num * scalar * 32767));
        }
        return type(num * scalar);
    }

    void set_scalar(const double scalar)
    {
        for (size_t i = 0; i < sc16_table_len; i++) {
            const uint16_t val = tohost(uint16_t(i & 0xffff));
            const type real    = conv(int8_t(val >> 8), scalar);
            const type imag    = conv(int8_t(val >> 0), scalar);
            _table[i]          = std::complex<type>(real, imag);
        }
    }

    void operator()(
        const input_type& inputs, const output_type& outputs, const size_t nsamps)
    {
        const item32_t* input =
            reinterpret_cast<const item32_t*>(size_t(inputs[0]) & ~0x3);
        std::complex<type>* output = reinterpret_cast<std::complex<type>*>(outputs[0]);

        size_t num_samps = nsamps;

        if ((size_t(inputs[0]) & 0x3) != 0) {
            const item32_t item0 = *input++;
            *output++            = _table[uint16_t(item0 >> hi_shift)];
            num_samps--;
        }

        const size_t num_pairs = num_samps / 2;
        for (size_t i = 0, j = 0; i < num_pairs; i++, j += 2) {
            const item32_t item_i = (input[i]);
            output[j]             = _table[uint16_t(item_i >> lo_shift)];
            output[j + 1]         = _table[uint16_t(item_i >> hi_shift)];
        }

        if (num_samps != num_pairs * 2) {
            const item32_t item_n = input[num_pairs];
            output[num_samps - 1] = _table[uint16_t(item_n >> lo_shift)];
        }
    }

private:
    std::vector<std::complex<type>> _table;
};

/***********************************************************************
 * Factory functions and registration
 **********************************************************************/

#ifdef UHD_BIG_ENDIAN
#    define SHIFT_PAIR0 16, 0
#    define SHIFT_PAIR1 0, 16
#    define BE_SWAP false
#    define LE_SWAP true
#else
#    define SHIFT_PAIR0 0, 16
#    define SHIFT_PAIR1 16, 0
#    define BE_SWAP true
#    define LE_SWAP false
#endif

static converter::sptr make_convert_sc16_item32_be_1_to_fc32_1(void)
{
    return converter::sptr(
        new convert_sc16_item32_1_to_fcxx_1<float, uhd::ntohx, SHIFT_PAIR0>());
}

static converter::sptr make_convert_sc16_item32_be_1_to_fc64_1(void)
{
    return converter::sptr(
        new convert_sc16_item32_1_to_fcxx_1<double, uhd::ntohx, SHIFT_PAIR0>());
}

static converter::sptr make_convert_sc16_item32_le_1_to_fc32_1(void)
{
    return converter::sptr(
        new convert_sc16_item32_1_to_fcxx_1<float, uhd::wtohx, SHIFT_PAIR1>());
}

static converter::sptr make_convert_sc16_item32_le_1_to_fc64_1(void)
{
    return converter::sptr(
        new convert_sc16_item32_1_to_fcxx_1<double, uhd::wtohx, SHIFT_PAIR1>());
}

static converter::sptr make_convert_sc8_item32_be_1_to_fc32_1(void)
{
    return converter::sptr(
        new convert_sc8_item32_1_to_fcxx_1<float, uhd::ntohx, SHIFT_PAIR0>());
}

static converter::sptr make_convert_sc8_item32_be_1_to_fc64_1(void)
{
    return converter::sptr(
        new convert_sc8_item32_1_to_fcxx_1<double, uhd::ntohx, SHIFT_PAIR0>());
}

static converter::sptr make_convert_sc8_item32_le_1_to_fc32_1(void)
{
    return converter::sptr(
        new convert_sc8_item32_1_to_fcxx_1<float, uhd::wtohx, SHIFT_PAIR1>());
}

static converter::sptr make_convert_sc8_item32_le_1_to_fc64_1(void)
{
    return converter::sptr(
        new convert_sc8_item32_1_to_fcxx_1<double, uhd::wtohx, SHIFT_PAIR1>());
}

static converter::sptr make_convert_sc8_item32_be_1_to_sc16_1(void)
{
    return converter::sptr(
        new convert_sc8_item32_1_to_fcxx_1<s16_t, uhd::ntohx, SHIFT_PAIR0>());
}

static converter::sptr make_convert_sc8_item32_le_1_to_sc16_1(void)
{
    return converter::sptr(
        new convert_sc8_item32_1_to_fcxx_1<s16_t, uhd::wtohx, SHIFT_PAIR1>());
}

static converter::sptr make_convert_sc16_1_to_sc8_item32_be_1(void)
{
    return converter::sptr(new convert_sc16_1_to_sc8_item32_1<BE_SWAP>());
}

static converter::sptr make_convert_sc16_1_to_sc8_item32_le_1(void)
{
    return converter::sptr(new convert_sc16_1_to_sc8_item32_1<LE_SWAP>());
}

UHD_STATIC_BLOCK(register_convert_sc16_item32_1_to_fcxx_1)
{
    uhd::convert::id_type id;
    id.num_inputs  = 1;
    id.num_outputs = 1;

    id.output_format = "fc32";
    id.input_format  = "sc16_item32_be";
    uhd::convert::register_converter(
        id, &make_convert_sc16_item32_be_1_to_fc32_1, PRIORITY_TABLE);

    id.output_format = "fc64";
    id.input_format  = "sc16_item32_be";
    uhd::convert::register_converter(
        id, &make_convert_sc16_item32_be_1_to_fc64_1, PRIORITY_TABLE);

    id.output_format = "fc32";
    id.input_format  = "sc16_item32_le";
    uhd::convert::register_converter(
        id, &make_convert_sc16_item32_le_1_to_fc32_1, PRIORITY_TABLE);

    id.output_format = "fc64";
    id.input_format  = "sc16_item32_le";
    uhd::convert::register_converter(
        id, &make_convert_sc16_item32_le_1_to_fc64_1, PRIORITY_TABLE);

    id.output_format = "fc32";
    id.input_format  = "sc8_item32_be";
    uhd::convert::register_converter(
        id, &make_convert_sc8_item32_be_1_to_fc32_1, PRIORITY_TABLE);

    id.output_format = "fc64";
    id.input_format  = "sc8_item32_be";
    uhd::convert::register_converter(
        id, &make_convert_sc8_item32_be_1_to_fc64_1, PRIORITY_TABLE);

    id.output_format = "fc32";
    id.input_format  = "sc8_item32_le";
    uhd::convert::register_converter(
        id, &make_convert_sc8_item32_le_1_to_fc32_1, PRIORITY_TABLE);

    id.output_format = "fc64";
    id.input_format  = "sc8_item32_le";
    uhd::convert::register_converter(
        id, &make_convert_sc8_item32_le_1_to_fc64_1, PRIORITY_TABLE);

    id.output_format = "sc16";
    id.input_format  = "sc8_item32_be";
    uhd::convert::register_converter(
        id, &make_convert_sc8_item32_be_1_to_sc16_1, PRIORITY_TABLE);

    id.output_format = "sc16";
    id.input_format  = "sc8_item32_le";
    uhd::convert::register_converter(
        id, &make_convert_sc8_item32_le_1_to_sc16_1, PRIORITY_TABLE);

    id.input_format  = "sc16";
    id.output_format = "sc8_item32_be";
    uhd::convert::register_converter(
        id, &make_convert_sc16_1_to_sc8_item32_be_1, PRIORITY_TABLE);

    id.input_format  = "sc16";
    id.output_format = "sc8_item32_le";
    uhd::convert::register_converter(
        id, &make_convert_sc16_1_to_sc8_item32_le_1, PRIORITY_TABLE);
}