aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/convert/convert_with_neon.cpp
blob: a172afb54eb74222a7b5226560a1d3ea7ae229ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
//
// Copyright 2011-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <arm_neon.h>

extern "C" {
void neon_item32_sc16_swap_16n(void *, void *, int iter);
}

static const int SIMD_WIDTH = 16;

using namespace uhd::convert;

DECLARE_CONVERTER(fc32, 1, sc16_item32_le, 1, PRIORITY_SIMD){
    const fc32_t *input = reinterpret_cast<const fc32_t *>(inputs[0]);
    item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);

    size_t i;

    float32x4_t Q0 = vdupq_n_f32(float(scale_factor));
    for (i=0; i < (nsamps & ~0x0f); i+=8) {
        float32x4_t Q1 = vld1q_f32(reinterpret_cast<const float *>(&input[i]));
        float32x4_t Q4 = vld1q_f32(reinterpret_cast<const float *>(&input[i+2]));
        float32x4_t Q7 = vld1q_f32(reinterpret_cast<const float *>(&input[i+4]));
        float32x4_t Q10 = vld1q_f32(reinterpret_cast<const float *>(&input[i+6]));

        float32x4_t Q2 = vmulq_f32(Q1, Q0);
        int32x4_t Q3 = vcvtq_s32_f32(Q2);
        int16x4_t D8 = vmovn_s32(Q3);
        int16x4_t D9 = vrev32_s16(D8);
        vst1_s16((reinterpret_cast<int16_t *>(&output[i])), D9);

        float32x4_t Q5 = vmulq_f32(Q4, Q0);
        int32x4_t Q6 = vcvtq_s32_f32(Q5);
        int16x4_t D10 = vmovn_s32(Q6);
        int16x4_t D11 = vrev32_s16(D10);
        vst1_s16((reinterpret_cast<int16_t *>(&output[i+2])), D11);

        float32x4_t Q8 = vmulq_f32(Q7, Q0);
        int32x4_t Q9 = vcvtq_s32_f32(Q8);
        int16x4_t D12 = vmovn_s32(Q9);
        int16x4_t D13 = vrev32_s16(D12);
        vst1_s16((reinterpret_cast<int16_t *>(&output[i+4])), D13);

        float32x4_t Q11 = vmulq_f32(Q10, Q0);
        int32x4_t Q13 = vcvtq_s32_f32(Q11);
        int16x4_t D14 = vmovn_s32(Q13);
        int16x4_t D15 = vrev32_s16(D14);
        vst1_s16((reinterpret_cast<int16_t *>(&output[i+6])), D15);
    }

    xx_to_item32_sc16<uhd::htowx>(input+i, output+i, nsamps-i, scale_factor);
}

DECLARE_CONVERTER(sc16_item32_le, 1, fc32, 1, PRIORITY_SIMD){
    const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
    fc32_t *output = reinterpret_cast<fc32_t *>(outputs[0]);

    size_t i;

    float32x4_t Q1 = vdupq_n_f32(float(scale_factor));
    for (i=0; i < (nsamps & ~0xf); i+=8) {
        int16x4_t D0 = vld1_s16(reinterpret_cast<const int16_t *>(&input[i]));
        int16x4_t D2 = vld1_s16(reinterpret_cast<const int16_t *>(&input[i+2]));
        int16x4_t D4 = vld1_s16(reinterpret_cast<const int16_t *>(&input[i+4]));
        int16x4_t D6 = vld1_s16(reinterpret_cast<const int16_t *>(&input[i+6]));

        int16x4_t D1 = vrev32_s16(D0);
        int32x4_t Q2 = vmovl_s16(D1);
        float32x4_t Q3 = vcvtq_f32_s32(Q2);
        float32x4_t Q4 = vmulq_f32(Q3, Q1);
        vst1q_f32((reinterpret_cast<float *>(&output[i])), Q4);

        int16x4_t D3 = vrev32_s16(D2);
        int32x4_t Q5 = vmovl_s16(D3);
        float32x4_t Q6 = vcvtq_f32_s32(Q5);
        float32x4_t Q7 = vmulq_f32(Q6, Q1);
        vst1q_f32((reinterpret_cast<float *>(&output[i+2])), Q7);

        int16x4_t D5 = vrev32_s16(D4);
        int32x4_t Q8 = vmovl_s16(D5);
        float32x4_t Q9 = vcvtq_f32_s32(Q8);
        float32x4_t Q10 = vmulq_f32(Q9, Q1);
        vst1q_f32((reinterpret_cast<float *>(&output[i+4])), Q10);

        int16x4_t D7 = vrev32_s16(D6);
        int32x4_t Q11 = vmovl_s16(D7);
        float32x4_t Q12 = vcvtq_f32_s32(Q11);
        float32x4_t Q13 = vmulq_f32(Q12, Q1);
        vst1q_f32((reinterpret_cast<float *>(&output[i+6])), Q13);
    }

    item32_sc16_to_xx<uhd::htowx>(input+i, output+i, nsamps-i, scale_factor);
}

DECLARE_CONVERTER(sc16, 1, sc16_item32_le, 1, PRIORITY_SIMD){
    const sc16_t *input = reinterpret_cast<const sc16_t *>(inputs[0]);
    item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);

    size_t i = nsamps / SIMD_WIDTH;

    if (i)
        neon_item32_sc16_swap_16n((void *) input, (void *) output, i);

    i *= SIMD_WIDTH;

    xx_to_item32_sc16<uhd::htowx>(input+i, output+i, nsamps-i, scale_factor);
}

DECLARE_CONVERTER(sc16_item32_le, 1, sc16, 1, PRIORITY_SIMD){
    const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
    sc16_t *output = reinterpret_cast<sc16_t *>(outputs[0]);

    size_t i = nsamps / SIMD_WIDTH;

    if (i)
        neon_item32_sc16_swap_16n((void *) input, (void *) output, i);

    i *= SIMD_WIDTH;

    item32_sc16_to_xx<uhd::wtohx>(input+i, output+i, nsamps-i, scale_factor);
}