1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
//
// Copyright 2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <uhd/utils/msg.hpp>
#include <boost/math/special_functions/round.hpp>
#include <vector>
using namespace uhd::convert;
typedef boost::uint32_t (*tohost32_type)(boost::uint32_t);
struct item32_sc12_3x
{
item32_t line0;
item32_t line1;
item32_t line2;
};
template <typename type, tohost32_type tohost>
void convert_sc12_item32_3_to_star_4
(
const item32_sc12_3x &input,
std::complex<type> &out0,
std::complex<type> &out1,
std::complex<type> &out2,
std::complex<type> &out3,
const double scalar
)
{
//step 0: extract the lines from the input buffer
const item32_t line0 = tohost(input.line0);
const item32_t line1 = tohost(input.line1);
const item32_t line2 = tohost(input.line2);
const boost::uint64_t line01 = (boost::uint64_t(line0) << 32) | line1;
const boost::uint64_t line12 = (boost::uint64_t(line1) << 32) | line2;
//step 1: shift out and mask off the individual numbers
const type i0 = type(boost::int16_t(line0 >> 16)*scalar);
const type q0 = type(boost::int16_t(line0 >> 4)*scalar);
const type i1 = type(boost::int16_t(line01 >> 24)*scalar);
const type q1 = type(boost::int16_t(line1 >> 12)*scalar);
const type i2 = type(boost::int16_t(line1 >> 0)*scalar);
const type q2 = type(boost::int16_t(line12 >> 20)*scalar);
const type i3 = type(boost::int16_t(line2 >> 8)*scalar);
const type q3 = type(boost::int16_t(line2 << 4)*scalar);
//step 2: load the outputs
out0 = std::complex<type>(i0, q0);
out1 = std::complex<type>(i1, q1);
out2 = std::complex<type>(i2, q2);
out3 = std::complex<type>(i3, q3);
}
template <typename type, tohost32_type tohost>
struct convert_sc12_item32_1_to_star_1 : public converter
{
convert_sc12_item32_1_to_star_1(void)
{
//NOP
}
void set_scalar(const double scalar)
{
const int unpack_growth = 16;
_scalar = scalar/unpack_growth;
}
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps)
{
const item32_sc12_3x *input = reinterpret_cast<const item32_sc12_3x *>(size_t(inputs[0]) & ~0x3);
std::complex<type> *output = reinterpret_cast<std::complex<type> *>(outputs[0]);
//helper variables
std::complex<type> dummy0, dummy1, dummy2;
size_t i = 0, o = 0;
//handle the head case
const size_t head_samps = size_t(inputs[0]) & 0x3;
switch (head_samps)
{
case 0: break; //no head
case 1: convert_sc12_item32_3_to_star_4<type, tohost>(input[i++], dummy0, dummy1, dummy2, output[0], _scalar); break;
case 2: convert_sc12_item32_3_to_star_4<type, tohost>(input[i++], dummy0, dummy1, output[0], output[1], _scalar); break;
case 3: convert_sc12_item32_3_to_star_4<type, tohost>(input[i++], dummy0, output[0], output[1], output[2], _scalar); break;
}
o += head_samps;
//convert the body
while (o+3 < nsamps)
{
convert_sc12_item32_3_to_star_4<type, tohost>(input[i], output[o+0], output[o+1], output[o+2], output[o+3], _scalar);
i++; o += 4;
}
//handle the tail case
const size_t tail_samps = nsamps - o;
switch (tail_samps)
{
case 0: break; //no tail
case 1: convert_sc12_item32_3_to_star_4<type, tohost>(input[i], output[o+0], dummy0, dummy1, dummy2, _scalar); break;
case 2: convert_sc12_item32_3_to_star_4<type, tohost>(input[i], output[o+0], output[o+1], dummy1, dummy2, _scalar); break;
case 3: convert_sc12_item32_3_to_star_4<type, tohost>(input[i], output[o+0], output[o+1], output[o+2], dummy2, _scalar); break;
}
}
double _scalar;
};
static converter::sptr make_convert_sc12_item32_le_1_to_fc32_1(void)
{
return converter::sptr(new convert_sc12_item32_1_to_star_1<float, uhd::wtohx>());
}
static converter::sptr make_convert_sc12_item32_be_1_to_fc32_1(void)
{
return converter::sptr(new convert_sc12_item32_1_to_star_1<float, uhd::ntohx>());
}
UHD_STATIC_BLOCK(register_convert_unpack_sc12)
{
uhd::convert::register_bytes_per_item("sc12", 3/*bytes*/);
uhd::convert::id_type id;
id.num_inputs = 1;
id.num_outputs = 1;
id.output_format = "fc32";
id.input_format = "sc12_item32_le";
uhd::convert::register_converter(id, &make_convert_sc12_item32_le_1_to_fc32_1, PRIORITY_GENERAL);
id.input_format = "sc12_item32_be";
uhd::convert::register_converter(id, &make_convert_sc12_item32_be_1_to_fc32_1, PRIORITY_GENERAL);
}
|