aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/convert/convert_unpack_sc12.cpp
blob: 07f9cffa09ed04f7dfe97bbbd7c57a44473c429d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//
// Copyright 2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <uhd/utils/log.hpp>
#include <boost/math/special_functions/round.hpp>
#include <vector>
#include <type_traits>

using namespace uhd::convert;

typedef uint32_t (*tohost32_type)(uint32_t);

/* C language specification requires this to be packed
 * (i.e., line0, line1, line2 will be in adjacent memory locations).
 * If this was not true, we'd need compiler flags here to specify
 * alignment/packing.
 */
struct item32_sc12_3x
{
    item32_t line0;
    item32_t line1;
    item32_t line2;
};

/*
 * convert_sc12_item32_3_to_star_4 takes in 3 lines with 32 bit each
 * and converts them 4 samples of type 'std::complex<type>'.
 * The structure of the 3 lines is as follows:
 *  _ _ _ _ _ _ _ _
 * |_ _ _1_ _ _|_ _|
 * |_2_ _ _|_ _ _3_|
 * |_ _|_ _ _4_ _ _|
 *
 * The numbers mark the position of one complex sample.
 */
template <typename type, tohost32_type tohost>
void convert_sc12_item32_3_to_star_4
(
    const item32_sc12_3x &input,
    std::complex<type> &out0,
    std::complex<type> &out1,
    std::complex<type> &out2,
    std::complex<type> &out3,
    const double scalar,
    typename std::enable_if<std::is_floating_point<type>::value>::type* = NULL
)
{
    //step 0: extract the lines from the input buffer
    const item32_t line0 = tohost(input.line0);
    const item32_t line1 = tohost(input.line1);
    const item32_t line2 = tohost(input.line2);
    const uint64_t line01 = (uint64_t(line0) << 32) | line1;
    const uint64_t line12 = (uint64_t(line1) << 32) | line2;

    //step 1: shift out and mask off the individual numbers
    const type i0 = type(int16_t((line0 >> 16) & 0xfff0)*scalar);
    const type q0 = type(int16_t((line0 >> 4) & 0xfff0)*scalar);

    const type i1 = type(int16_t((line01 >> 24) & 0xfff0)*scalar);
    const type q1 = type(int16_t((line1 >> 12) & 0xfff0)*scalar);

    const type i2 = type(int16_t((line1 >> 0) & 0xfff0)*scalar);
    const type q2 = type(int16_t((line12 >> 20) & 0xfff0)*scalar);

    const type i3 = type(int16_t((line2 >> 8) & 0xfff0)*scalar);
    const type q3 = type(int16_t((line2 << 4) & 0xfff0)*scalar);

    //step 2: load the outputs
    out0 = std::complex<type>(i0, q0);
    out1 = std::complex<type>(i1, q1);
    out2 = std::complex<type>(i2, q2);
    out3 = std::complex<type>(i3, q3);
}

template <typename type, tohost32_type tohost>
void convert_sc12_item32_3_to_star_4
(
    const item32_sc12_3x &input,
    std::complex<type> &out0,
    std::complex<type> &out1,
    std::complex<type> &out2,
    std::complex<type> &out3,
    const double,
    typename std::enable_if<std::is_integral<type>::value>::type* = NULL
)
{
    //step 0: extract the lines from the input buffer
    const item32_t line0 = tohost(input.line0);
    const item32_t line1 = tohost(input.line1);
    const item32_t line2 = tohost(input.line2);
    const uint64_t line01 = (uint64_t(line0) << 32) | line1;
    const uint64_t line12 = (uint64_t(line1) << 32) | line2;

    //step 1: extract and load the outputs
    out0 = std::complex<type>(line0  >> 16 & 0xfff0, line0  >>  4 & 0xfff0);
    out1 = std::complex<type>(line01 >> 24 & 0xfff0, line1  >> 12 & 0xfff0);
    out2 = std::complex<type>(line1  >>  0 & 0xfff0, line12 >> 20 & 0xfff0);
    out3 = std::complex<type>(line2  >>  8 & 0xfff0, line2  <<  4 & 0xfff0);
}

template <typename type, tohost32_type tohost>
struct convert_sc12_item32_1_to_star_1 : public converter
{
    convert_sc12_item32_1_to_star_1(void):_scalar(0.0)
    {
        //NOP
    }

    void set_scalar(const double scalar)
    {
        const int unpack_growth = 16;
        _scalar = scalar/unpack_growth;
    }

    /*
     * This converter takes in 24 bits complex samples, 12 bits I and 12 bits Q, and converts them to type 'std::complex<type>'.
     * 'type' is usually 'float'.
     * For the converter to work correctly the used managed_buffer which holds all samples of one packet has to be 32 bits aligned.
     * We assume 32 bits to be one line. This said the converter must be aware where it is supposed to start within 3 lines.
     *
     */
    void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps)
    {
        /*
         * Looking at the line structure above we can identify 4 cases.
         * Each corresponds to the start of a different sample within a 3 line block.
         * head_samps derives the number of samples left within one block.
         * Then the number of bytes the converter has to rewind are calculated.
         */
        const size_t head_samps = size_t(inputs[0]) & 0x3;
        size_t rewind = 0;
        switch(head_samps)
        {
            case 0: break;
            case 1: rewind = 9; break;
            case 2: rewind = 6; break;
            case 3: rewind = 3; break;
        }

        /*
         * The pointer *input now points to the head of a 3 line block.
         */
        const item32_sc12_3x *input = reinterpret_cast<const item32_sc12_3x *>(size_t(inputs[0]) - rewind);
        std::complex<type> *output = reinterpret_cast<std::complex<type> *>(outputs[0]);

        //helper variables
        std::complex<type> dummy0, dummy1, dummy2;
        size_t i = 0, o = 0;

        /*
         * handle the head case
         * head_samps holds the number of samples left in a block.
         * The 3 line converter is called for the whole block and already processed samples are dumped.
         * We don't run into the risk of a SIGSEGV because input will always point to valid memory within a managed_buffer.
         * Furthermore the bytes in a buffer remain unchanged after they have been copied into it.
         */
        switch (head_samps)
        {
        case 0: break; //no head
        case 1: convert_sc12_item32_3_to_star_4<type, tohost>(input[i++], dummy0, dummy1, dummy2, output[0], _scalar); break;
        case 2: convert_sc12_item32_3_to_star_4<type, tohost>(input[i++], dummy0, dummy1, output[0], output[1], _scalar); break;
        case 3: convert_sc12_item32_3_to_star_4<type, tohost>(input[i++], dummy0, output[0], output[1], output[2], _scalar); break;
        }
        o += head_samps;

        //convert the body
        while (o+3 < nsamps)
        {
            convert_sc12_item32_3_to_star_4<type, tohost>(input[i], output[o+0], output[o+1], output[o+2], output[o+3], _scalar);
            i++; o += 4;
        }

        /*
         * handle the tail case
         * The converter can be called with any number of samples to be converted.
         * This can end up in only a part of a block to be converted in one call.
         * We never have to worry about SIGSEGVs here as long as we end in the middle of a managed_buffer.
         * If we are at the end of managed_buffer there are 2 precautions to prevent SIGSEGVs.
         * Firstly only a read operation is performed.
         * Secondly managed_buffers allocate a fixed size memory which is always larger than the actually used size.
         * e.g. The current sample maximum is 2000 samples in a packet over USB.
         * With sc12 samples a packet consists of 6000kb but managed_buffers allocate 16kb each.
         * Thus we don't run into problems here either.
         */
        const size_t tail_samps = nsamps - o;
        switch (tail_samps)
        {
        case 0: break; //no tail
        case 1: convert_sc12_item32_3_to_star_4<type, tohost>(input[i], output[o+0], dummy0, dummy1, dummy2, _scalar); break;
        case 2: convert_sc12_item32_3_to_star_4<type, tohost>(input[i], output[o+0], output[o+1], dummy1, dummy2, _scalar); break;
        case 3: convert_sc12_item32_3_to_star_4<type, tohost>(input[i], output[o+0], output[o+1], output[o+2], dummy2, _scalar); break;
        }
    }

    double _scalar;
};

static converter::sptr make_convert_sc12_item32_le_1_to_fc32_1(void)
{
    return converter::sptr(new convert_sc12_item32_1_to_star_1<float, uhd::wtohx>());
}

static converter::sptr make_convert_sc12_item32_be_1_to_fc32_1(void)
{
    return converter::sptr(new convert_sc12_item32_1_to_star_1<float, uhd::ntohx>());
}

static converter::sptr make_convert_sc12_item32_le_1_to_sc16_1(void)
{
    return converter::sptr(new convert_sc12_item32_1_to_star_1<short, uhd::wtohx>());
}

static converter::sptr make_convert_sc12_item32_be_1_to_sc16_1(void)
{
    return converter::sptr(new convert_sc12_item32_1_to_star_1<short, uhd::ntohx>());
}

UHD_STATIC_BLOCK(register_convert_unpack_sc12)
{
    uhd::convert::register_bytes_per_item("sc12", 3/*bytes*/);
    uhd::convert::id_type id;
    id.num_inputs = 1;
    id.num_outputs = 1;

    id.output_format = "fc32";
    id.input_format = "sc12_item32_le";
    uhd::convert::register_converter(id, &make_convert_sc12_item32_le_1_to_fc32_1, PRIORITY_GENERAL);
    id.input_format = "sc12_item32_be";
    uhd::convert::register_converter(id, &make_convert_sc12_item32_be_1_to_fc32_1, PRIORITY_GENERAL);

    id.output_format = "sc16";
    id.input_format = "sc12_item32_le";
    uhd::convert::register_converter(id, &make_convert_sc12_item32_le_1_to_sc16_1, PRIORITY_GENERAL);
    id.input_format = "sc12_item32_be";
    uhd::convert::register_converter(id, &make_convert_sc12_item32_be_1_to_sc16_1, PRIORITY_GENERAL);
}