1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
//
// Copyright 2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <uhd/utils/msg.hpp>
#include <boost/math/special_functions/round.hpp>
#include <vector>
using namespace uhd::convert;
typedef boost::uint32_t (*towire32_type)(boost::uint32_t);
struct item32_sc12_3x
{
item32_t line0;
item32_t line1;
item32_t line2;
};
template <typename type, towire32_type towire>
void convert_star_4_to_sc12_item32_3
(
const std::complex<type> &in0,
const std::complex<type> &in1,
const std::complex<type> &in2,
const std::complex<type> &in3,
item32_sc12_3x &output,
const double scalar
)
{
const item32_t i0 = boost::int32_t(type(in0.real()*scalar)) & 0xfff;
const item32_t q0 = boost::int32_t(type(in0.imag()*scalar)) & 0xfff;
const item32_t i1 = boost::int32_t(type(in1.real()*scalar)) & 0xfff;
const item32_t q1 = boost::int32_t(type(in1.imag()*scalar)) & 0xfff;
const item32_t i2 = boost::int32_t(type(in2.real()*scalar)) & 0xfff;
const item32_t q2 = boost::int32_t(type(in2.imag()*scalar)) & 0xfff;
const item32_t i3 = boost::int32_t(type(in3.real()*scalar)) & 0xfff;
const item32_t q3 = boost::int32_t(type(in3.imag()*scalar)) & 0xfff;
const item32_t line0 = (i0 << 20) | (q0 << 8) | (i1 >> 4);
const item32_t line1 = (i1 << 28) | (q1 << 16) | (i2 << 4) | (q2 >> 8);
const item32_t line2 = (q2 << 24) | (i3 << 12) | (q3);
output.line0 = towire(line0);
output.line1 = towire(line1);
output.line2 = towire(line2);
}
template <typename type, towire32_type towire>
struct convert_star_1_to_sc12_item32_1 : public converter
{
convert_star_1_to_sc12_item32_1(void):_scalar(0.0)
{
//NOP
}
void set_scalar(const double scalar)
{
_scalar = scalar;
}
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps)
{
const std::complex<type> *input = reinterpret_cast<const std::complex<type> *>(inputs[0]);
/*
* Effectively outputs will point to a managed_buffer instance. These buffers are 32 bit aligned.
* For a detailed description see comments in 'convert_unpack_sc12.cpp'.
*/
const size_t head_samps = size_t(inputs[0]) & 0x3;
size_t rewind = 0;
switch(head_samps)
{
case 0: break;
case 1: rewind = 9; break;
case 2: rewind = 6; break;
case 3: rewind = 3; break;
}
item32_sc12_3x *output = reinterpret_cast<item32_sc12_3x *>(size_t(outputs[0]) - rewind);
//helper variables
size_t i = 0, o = 0;
//handle the head case
switch (head_samps)
{
case 0: break; //no head
case 1: convert_star_4_to_sc12_item32_3<type, towire>(0, 0, 0, input[0], output[o++], _scalar); break;
case 2: convert_star_4_to_sc12_item32_3<type, towire>(0, 0, input[0], input[1], output[o++], _scalar); break;
case 3: convert_star_4_to_sc12_item32_3<type, towire>(0, input[0], input[1], input[2], output[o++], _scalar); break;
}
i += head_samps;
//convert the body
while (i+3 < nsamps)
{
convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], input[i+1], input[i+2], input[i+3], output[o], _scalar);
o++; i += 4;
}
//handle the tail case
const size_t tail_samps = nsamps - i;
switch (tail_samps)
{
case 0: break; //no tail
case 1: convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], 0, 0, 0, output[o], _scalar); break;
case 2: convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], input[i+1], 0, 0, output[o], _scalar); break;
case 3: convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], input[i+1], input[i+2], 0, output[o], _scalar); break;
}
}
double _scalar;
};
static converter::sptr make_convert_fc32_1_to_sc12_item32_le_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_1<float, uhd::wtohx>());
}
static converter::sptr make_convert_fc32_1_to_sc12_item32_be_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_1<float, uhd::ntohx>());
}
UHD_STATIC_BLOCK(register_convert_pack_sc12)
{
//uhd::convert::register_bytes_per_item("sc12", 3/*bytes*/); //registered in unpack
uhd::convert::id_type id;
id.num_inputs = 1;
id.num_outputs = 1;
id.input_format = "fc32";
id.output_format = "sc12_item32_le";
uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_le_1, PRIORITY_GENERAL);
id.output_format = "sc12_item32_be";
uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_be_1, PRIORITY_GENERAL);
}
|