1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
//
// Copyright 2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <uhd/utils/msg.hpp>
#include <boost/math/special_functions/round.hpp>
#include <vector>
using namespace uhd::convert;
typedef boost::uint32_t (*towire32_type)(boost::uint32_t);
/* C language specification requires this to be packed
* (i.e., line0, line1, line2 will be in adjacent memory locations).
* If this was not true, we'd need compiler flags here to specify
* alignment/packing.
*/
struct item32_sc12_3x
{
item32_t line0;
item32_t line1;
item32_t line2;
};
enum item32_sc12_3x_enable {
CONVERT12_LINE0 = 0x01,
CONVERT12_LINE1 = 0x02,
CONVERT12_LINE2 = 0x04,
CONVERT12_LINE_ALL = 0x07,
};
/*
* Packed 12-bit converter with selective line enable
*
* The converter operates on 4 complex inputs and selectively writes to one to
* three 32-bit lines. Line selection allows for partial writes of less than
* 4 complex samples, or a full 3 x 32-bit struct. Writes are always full 32-bit
* lines, so in the case of partial writes, the number of bytes written will
* exceed the the number of bytes filled by actual samples.
*
* _ _ _ _ _ _ _ _
* |_ _ _1_ _ _|_ _| 0
* |_2_ _ _|_ _ _3_|
* |_ _|_ _ _4_ _ _| 2
* 31 0
*/
template <typename type, towire32_type towire>
void convert_star_4_to_sc12_item32_3
(
const std::complex<type> &in0,
const std::complex<type> &in1,
const std::complex<type> &in2,
const std::complex<type> &in3,
const int enable,
item32_sc12_3x &output,
const double scalar
)
{
const item32_t i0 = boost::int32_t(type(in0.real()*scalar)) & 0xfff;
const item32_t q0 = boost::int32_t(type(in0.imag()*scalar)) & 0xfff;
const item32_t i1 = boost::int32_t(type(in1.real()*scalar)) & 0xfff;
const item32_t q1 = boost::int32_t(type(in1.imag()*scalar)) & 0xfff;
const item32_t i2 = boost::int32_t(type(in2.real()*scalar)) & 0xfff;
const item32_t q2 = boost::int32_t(type(in2.imag()*scalar)) & 0xfff;
const item32_t i3 = boost::int32_t(type(in3.real()*scalar)) & 0xfff;
const item32_t q3 = boost::int32_t(type(in3.imag()*scalar)) & 0xfff;
const item32_t line0 = (i0 << 20) | (q0 << 8) | (i1 >> 4);
const item32_t line1 = (i1 << 28) | (q1 << 16) | (i2 << 4) | (q2 >> 8);
const item32_t line2 = (q2 << 24) | (i3 << 12) | (q3);
if (enable & CONVERT12_LINE0)
output.line0 = towire(line0);
if (enable & CONVERT12_LINE1)
output.line1 = towire(line1);
if (enable & CONVERT12_LINE2)
output.line2 = towire(line2);
}
template <typename type, towire32_type towire>
struct convert_star_1_to_sc12_item32_1 : public converter
{
convert_star_1_to_sc12_item32_1(void):_scalar(0.0)
{
//NOP
}
void set_scalar(const double scalar)
{
_scalar = scalar;
}
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps)
{
const std::complex<type> *input = reinterpret_cast<const std::complex<type> *>(inputs[0]);
/*
* Effectively outputs will point to a managed_buffer instance. These buffers are 32 bit aligned.
* For a detailed description see comments in 'convert_unpack_sc12.cpp'.
*/
const size_t head_samps = size_t(outputs[0]) & 0x3;
int enable;
size_t rewind = 0;
switch(head_samps)
{
case 0: break;
case 1: rewind = 9; break;
case 2: rewind = 6; break;
case 3: rewind = 3; break;
}
item32_sc12_3x *output = reinterpret_cast<item32_sc12_3x *>(size_t(outputs[0]) - rewind);
//helper variables
size_t i = 0, o = 0;
//handle the head case
switch (head_samps)
{
case 0:
break; //no head
case 1:
enable = CONVERT12_LINE2;
convert_star_4_to_sc12_item32_3<type, towire>(0, 0, 0, input[0], enable, output[o++], _scalar);
break;
case 2:
enable = CONVERT12_LINE2 | CONVERT12_LINE1;
convert_star_4_to_sc12_item32_3<type, towire>(0, 0, input[0], input[1], enable, output[o++], _scalar);
break;
case 3:
enable = CONVERT12_LINE2 | CONVERT12_LINE1 | CONVERT12_LINE0;
convert_star_4_to_sc12_item32_3<type, towire>(0, input[0], input[1], input[2], enable, output[o++], _scalar);
break;
}
i += head_samps;
//convert the body
while (i+3 < nsamps)
{
convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], input[i+1], input[i+2], input[i+3], CONVERT12_LINE_ALL, output[o], _scalar);
o++; i += 4;
}
//handle the tail case
const size_t tail_samps = nsamps - i;
switch (tail_samps)
{
case 0:
break; //no tail
case 1:
enable = CONVERT12_LINE0;
convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], 0, 0, 0, enable, output[o], _scalar);
break;
case 2:
enable = CONVERT12_LINE0 | CONVERT12_LINE1;
convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], input[i+1], 0, 0, enable, output[o], _scalar);
break;
case 3:
enable = CONVERT12_LINE0 | CONVERT12_LINE1 | CONVERT12_LINE2;
convert_star_4_to_sc12_item32_3<type, towire>(input[i+0], input[i+1], input[i+2], 0, enable, output[o], _scalar);
break;
}
}
double _scalar;
};
static converter::sptr make_convert_fc32_1_to_sc12_item32_le_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_1<float, uhd::wtohx>());
}
static converter::sptr make_convert_fc32_1_to_sc12_item32_be_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_1<float, uhd::ntohx>());
}
UHD_STATIC_BLOCK(register_convert_pack_sc12)
{
//uhd::convert::register_bytes_per_item("sc12", 3/*bytes*/); //registered in unpack
uhd::convert::id_type id;
id.num_inputs = 1;
id.num_outputs = 1;
id.input_format = "fc32";
id.output_format = "sc12_item32_le";
uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_le_1, PRIORITY_GENERAL);
id.output_format = "sc12_item32_be";
uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_be_1, PRIORITY_GENERAL);
}
|