1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
//
// Copyright 2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <emmintrin.h>
using namespace uhd::convert;
UHD_INLINE __m128i pack_sc8_item32_4x(
const __m128i &in0, const __m128i &in1,
const __m128i &in2, const __m128i &in3
){
const __m128i lo = _mm_packs_epi32(in0, in1);
const __m128i hi = _mm_packs_epi32(in2, in3);
return _mm_packs_epi16(lo, hi);
}
UHD_INLINE __m128i pack_sc32_4x_be(
const __m128d &lo, const __m128d &hi,
const __m128d &scalar
){
const __m128i tmpi_lo = _mm_cvttpd_epi32(_mm_mul_pd(hi, scalar));
const __m128i tmpi_hi = _mm_cvttpd_epi32(_mm_mul_pd(lo, scalar));
return _mm_unpacklo_epi64(tmpi_lo, tmpi_hi);
}
UHD_INLINE __m128i pack_sc32_4x_le(
const __m128d &lo, const __m128d &hi,
const __m128d &scalar
){
const __m128i tmpi_lo = _mm_cvttpd_epi32(_mm_mul_pd(lo, scalar));
const __m128i tmpi_hi = _mm_cvttpd_epi32(_mm_mul_pd(hi, scalar));
const __m128i tmpi = _mm_unpacklo_epi64(tmpi_lo, tmpi_hi);
return _mm_shuffle_epi32(tmpi, _MM_SHUFFLE(2, 3, 0, 1));
}
DECLARE_CONVERTER(fc64, 1, sc8_item32_be, 1, PRIORITY_SIMD){
const fc64_t *input = reinterpret_cast<const fc64_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
const __m128d scalar = _mm_set1_pd(scale_factor);
#define convert_fc64_1_to_sc8_item32_1_bswap_guts(_al_) \
for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \
/* load from input */ \
__m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+0)); \
__m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+1)); \
__m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+2)); \
__m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+3)); \
__m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+4)); \
__m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+5)); \
__m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+6)); \
__m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+7)); \
\
/* interleave */ \
const __m128i tmpi = pack_sc8_item32_4x( \
pack_sc32_4x_be(tmp0, tmp1, scalar), \
pack_sc32_4x_be(tmp2, tmp3, scalar), \
pack_sc32_4x_be(tmp4, tmp5, scalar), \
pack_sc32_4x_be(tmp6, tmp7, scalar) \
); \
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \
} \
size_t i = 0;
//dispatch according to alignment
if ((size_t(input) & 0xf) == 0){
convert_fc64_1_to_sc8_item32_1_bswap_guts(_)
}
else{
convert_fc64_1_to_sc8_item32_1_bswap_guts(u_)
}
//convert remainder
const size_t num_pairs = nsamps/2;
for (size_t j = i/2; j < num_pairs; j++, i+=2){
const item32_t item = fc64_to_item32_sc8(input[i], input[i+1], scale_factor);
output[j] = uhd::byteswap(item);
}
if (nsamps != num_pairs*2){
const item32_t item = fc64_to_item32_sc8(input[nsamps-1], 0, scale_factor);
output[num_pairs] = uhd::byteswap(item);
}
}
DECLARE_CONVERTER(fc64, 1, sc8_item32_le, 1, PRIORITY_SIMD){
const fc64_t *input = reinterpret_cast<const fc64_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
const __m128d scalar = _mm_set1_pd(scale_factor);
#define convert_fc64_1_to_sc8_item32_1_nswap_guts(_al_) \
for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \
/* load from input */ \
__m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+0)); \
__m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+1)); \
__m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+2)); \
__m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+3)); \
__m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+4)); \
__m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+5)); \
__m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+6)); \
__m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast<const double *>(input+i+7)); \
\
/* interleave */ \
const __m128i tmpi = pack_sc8_item32_4x( \
pack_sc32_4x_le(tmp0, tmp1, scalar), \
pack_sc32_4x_le(tmp2, tmp3, scalar), \
pack_sc32_4x_le(tmp4, tmp5, scalar), \
pack_sc32_4x_le(tmp6, tmp7, scalar) \
); \
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \
} \
size_t i = 0;
//dispatch according to alignment
if ((size_t(input) & 0xf) == 0){
convert_fc64_1_to_sc8_item32_1_nswap_guts(_)
}
else{
convert_fc64_1_to_sc8_item32_1_nswap_guts(u_)
}
//convert remainder
const size_t num_pairs = nsamps/2;
for (size_t j = i/2; j < num_pairs; j++, i+=2){
const item32_t item = fc64_to_item32_sc8(input[i], input[i+1], scale_factor);
output[j] = (item);
}
if (nsamps != num_pairs*2){
const item32_t item = fc64_to_item32_sc8(input[nsamps-1], 0, scale_factor);
output[num_pairs] = (item);
}
}
|