1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "convert_common.hpp"
#include <uhd/utils/byteswap.hpp>
#include <emmintrin.h>
using namespace uhd::convert;
DECLARE_CONVERTER(fc32, 1, sc16_item32_le, 1, PRIORITY_CUSTOM){
const fc32_t *input = reinterpret_cast<const fc32_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
const __m128 scalar = _mm_set_ps1(float(scale_factor));
#define convert_fc32_1_to_item32_1_nswap_guts(_al_) \
for (; i+4 < nsamps; i+=4){ \
/* load from input */ \
__m128 tmplo = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+0)); \
__m128 tmphi = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+2)); \
\
/* convert and scale */ \
__m128i tmpilo = _mm_cvtps_epi32(_mm_mul_ps(tmplo, scalar)); \
__m128i tmpihi = _mm_cvtps_epi32(_mm_mul_ps(tmphi, scalar)); \
\
/* pack + swap 16-bit pairs */ \
__m128i tmpi = _mm_packs_epi32(tmpilo, tmpihi); \
tmpi = _mm_shufflelo_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \
tmpi = _mm_shufflehi_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i *>(output+i), tmpi); \
} \
size_t i = 0;
//dispatch according to alignment
switch (size_t(input) & 0xf){
case 0x8:
output[i] = fc32_to_item32(input[i], float(scale_factor)); i++;
case 0x0:
convert_fc32_1_to_item32_1_nswap_guts(_)
break;
default: convert_fc32_1_to_item32_1_nswap_guts(u_)
}
//convert remainder
for (; i < nsamps; i++){
output[i] = fc32_to_item32(input[i], float(scale_factor));
}
}
DECLARE_CONVERTER(fc32, 1, sc16_item32_be, 1, PRIORITY_CUSTOM){
const fc32_t *input = reinterpret_cast<const fc32_t *>(inputs[0]);
item32_t *output = reinterpret_cast<item32_t *>(outputs[0]);
const __m128 scalar = _mm_set_ps1(float(scale_factor));
#define convert_fc32_1_to_item32_1_bswap_guts(_al_) \
for (; i+4 < nsamps; i+=4){ \
/* load from input */ \
__m128 tmplo = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+0)); \
__m128 tmphi = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+2)); \
\
/* convert and scale */ \
__m128i tmpilo = _mm_cvtps_epi32(_mm_mul_ps(tmplo, scalar)); \
__m128i tmpihi = _mm_cvtps_epi32(_mm_mul_ps(tmphi, scalar)); \
\
/* pack + byteswap -> byteswap 16 bit words */ \
__m128i tmpi = _mm_packs_epi32(tmpilo, tmpihi); \
tmpi = _mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); \
\
/* store to output */ \
_mm_storeu_si128(reinterpret_cast<__m128i *>(output+i), tmpi); \
} \
size_t i = 0;
//dispatch according to alignment
switch (size_t(input) & 0xf){
case 0x8:
output[i] = uhd::byteswap(fc32_to_item32(input[i], float(scale_factor))); i++;
case 0x0:
convert_fc32_1_to_item32_1_bswap_guts(_)
break;
default: convert_fc32_1_to_item32_1_bswap_guts(u_)
}
//convert remainder
for (; i < nsamps; i++){
output[i] = uhd::byteswap(fc32_to_item32(input[i], float(scale_factor)));
}
}
DECLARE_CONVERTER(sc16_item32_le, 1, fc32, 1, PRIORITY_CUSTOM){
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
fc32_t *output = reinterpret_cast<fc32_t *>(outputs[0]);
const __m128 scalar = _mm_set_ps1(float(scale_factor)/(1 << 16));
const __m128i zeroi = _mm_setzero_si128();
#define convert_item32_1_to_fc32_1_nswap_guts(_al_) \
for (; i+4 < nsamps; i+=4){ \
/* load from input */ \
__m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i *>(input+i)); \
\
/* unpack + swap 16-bit pairs */ \
tmpi = _mm_shufflelo_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \
tmpi = _mm_shufflehi_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \
__m128i tmpilo = _mm_unpacklo_epi16(zeroi, tmpi); /* value in upper 16 bits */ \
__m128i tmpihi = _mm_unpackhi_epi16(zeroi, tmpi); \
\
/* convert and scale */ \
__m128 tmplo = _mm_mul_ps(_mm_cvtepi32_ps(tmpilo), scalar); \
__m128 tmphi = _mm_mul_ps(_mm_cvtepi32_ps(tmpihi), scalar); \
\
/* store to output */ \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+i+0), tmplo); \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+i+2), tmphi); \
} \
size_t i = 0;
//dispatch according to alignment
switch (size_t(output) & 0xf){
case 0x8:
output[i] = item32_to_fc32(input[i], float(scale_factor)); i++;
case 0x0:
convert_item32_1_to_fc32_1_nswap_guts(_)
break;
default: convert_item32_1_to_fc32_1_nswap_guts(u_)
}
//convert remainder
for (; i < nsamps; i++){
output[i] = item32_to_fc32(input[i], float(scale_factor));
}
}
DECLARE_CONVERTER(sc16_item32_be, 1, fc32, 1, PRIORITY_CUSTOM){
const item32_t *input = reinterpret_cast<const item32_t *>(inputs[0]);
fc32_t *output = reinterpret_cast<fc32_t *>(outputs[0]);
const __m128 scalar = _mm_set_ps1(float(scale_factor)/(1 << 16));
const __m128i zeroi = _mm_setzero_si128();
#define convert_item32_1_to_fc32_1_bswap_guts(_al_) \
for (; i+4 < nsamps; i+=4){ \
/* load from input */ \
__m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i *>(input+i)); \
\
/* byteswap + unpack -> byteswap 16 bit words */ \
tmpi = _mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); \
__m128i tmpilo = _mm_unpacklo_epi16(zeroi, tmpi); /* value in upper 16 bits */ \
__m128i tmpihi = _mm_unpackhi_epi16(zeroi, tmpi); \
\
/* convert and scale */ \
__m128 tmplo = _mm_mul_ps(_mm_cvtepi32_ps(tmpilo), scalar); \
__m128 tmphi = _mm_mul_ps(_mm_cvtepi32_ps(tmpihi), scalar); \
\
/* store to output */ \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+i+0), tmplo); \
_mm_store ## _al_ ## ps(reinterpret_cast<float *>(output+i+2), tmphi); \
} \
size_t i = 0;
//dispatch according to alignment
switch (size_t(output) & 0xf){
case 0x8:
output[i] = item32_to_fc32(uhd::byteswap(input[i]), float(scale_factor)); i++;
case 0x0:
convert_item32_1_to_fc32_1_bswap_guts(_)
break;
default: convert_item32_1_to_fc32_1_bswap_guts(u_)
}
//convert remainder
for (; i < nsamps; i++){
output[i] = item32_to_fc32(uhd::byteswap(input[i]), float(scale_factor));
}
}
|