1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
//
// Copyright 2010-2012,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <uhd/types/tune_request.hpp>
#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/exception.hpp>
#include <boost/thread/thread.hpp>
#include <boost/program_options.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/foreach.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#include <iostream>
#include <fstream>
#include <complex>
#include <csignal>
#include <cmath>
namespace po = boost::program_options;
/***********************************************************************
* Signal handlers
**********************************************************************/
static bool stop_signal_called = false;
void sig_int_handler(int){stop_signal_called = true;}
/***********************************************************************
* Waveform generators
**********************************************************************/
static const size_t wave_table_len = 8192;
class wave_table_class{
public:
wave_table_class(const std::string &wave_type, const float ampl):
_wave_table(wave_table_len)
{
//compute real wave table with 1.0 amplitude
std::vector<double> real_wave_table(wave_table_len);
if (wave_type == "CONST"){
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = 1.0;
}
else if (wave_type == "SQUARE"){
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = (i < wave_table_len/2)? 0.0 : 1.0;
}
else if (wave_type == "RAMP"){
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = 2.0*i/(wave_table_len-1) - 1.0;
}
else if (wave_type == "SINE"){
static const double tau = 2*std::acos(-1.0);
for (size_t i = 0; i < wave_table_len; i++)
real_wave_table[i] = std::sin((tau*i)/wave_table_len);
}
else throw std::runtime_error("unknown waveform type: " + wave_type);
//compute i and q pairs with 90% offset and scale to amplitude
for (size_t i = 0; i < wave_table_len; i++){
const size_t q = (i+(3*wave_table_len)/4)%wave_table_len;
_wave_table[i] = std::complex<float>(ampl*real_wave_table[i], ampl*real_wave_table[q]);
}
}
inline std::complex<float> operator()(const size_t index) const{
return _wave_table[index % wave_table_len];
}
private:
std::vector<std::complex<float> > _wave_table;
};
/***********************************************************************
* transmit_worker function
* A function to be used as a boost::thread_group thread for transmitting
**********************************************************************/
void transmit_worker(
std::vector<std::complex<float> > buff,
wave_table_class wave_table,
uhd::tx_streamer::sptr tx_streamer,
uhd::tx_metadata_t metadata,
size_t step,
size_t index,
int num_channels
){
std::vector<std::complex<float> *> buffs(num_channels, &buff.front());
//send data until the signal handler gets called
while(not stop_signal_called){
//fill the buffer with the waveform
for (size_t n = 0; n < buff.size(); n++){
buff[n] = wave_table(index += step);
}
//send the entire contents of the buffer
tx_streamer->send(buffs, buff.size(), metadata);
metadata.start_of_burst = false;
metadata.has_time_spec = false;
}
//send a mini EOB packet
metadata.end_of_burst = true;
tx_streamer->send("", 0, metadata);
}
/***********************************************************************
* recv_to_file function
**********************************************************************/
template<typename samp_type> void recv_to_file(
uhd::usrp::multi_usrp::sptr usrp,
const std::string &cpu_format,
const std::string &wire_format,
const std::string &file,
size_t samps_per_buff,
int num_requested_samples,
float settling_time,
std::vector<size_t> rx_channel_nums
){
int num_total_samps = 0;
//create a receive streamer
uhd::stream_args_t stream_args(cpu_format,wire_format);
stream_args.channels = rx_channel_nums;
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
uhd::rx_metadata_t md;
std::vector<samp_type> buff(samps_per_buff);
std::ofstream outfile(file.c_str(), std::ofstream::binary);
bool overflow_message = true;
float timeout = settling_time + 0.1; //expected settling time + padding for first recv
//setup streaming
uhd::stream_cmd_t stream_cmd((num_requested_samples == 0)?
uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS:
uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE
);
stream_cmd.num_samps = num_requested_samples;
stream_cmd.stream_now = false;
stream_cmd.time_spec = uhd::time_spec_t(settling_time);
rx_stream->issue_stream_cmd(stream_cmd);
while(not stop_signal_called and (num_requested_samples != num_total_samps or num_requested_samples == 0)){
size_t num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md, timeout);
timeout = 0.1; //small timeout for subsequent recv
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
std::cout << boost::format("Timeout while streaming") << std::endl;
break;
}
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW){
if (overflow_message){
overflow_message = false;
std::cerr << boost::format(
"Got an overflow indication. Please consider the following:\n"
" Your write medium must sustain a rate of %fMB/s.\n"
" Dropped samples will not be written to the file.\n"
" Please modify this example for your purposes.\n"
" This message will not appear again.\n"
) % (usrp->get_rx_rate()*sizeof(samp_type)/1e6);
}
continue;
}
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE){
throw std::runtime_error(str(boost::format(
"Unexpected error code 0x%x"
) % md.error_code));
}
num_total_samps += num_rx_samps;
outfile.write((const char*)&buff.front(), num_rx_samps*sizeof(samp_type));
}
outfile.close();
}
/***********************************************************************
* Main function
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//transmit variables to be set by po
std::string tx_args, wave_type, tx_ant, tx_subdev, ref, otw, tx_channels;
double tx_rate, tx_freq, tx_gain, wave_freq, tx_bw;
float ampl;
//receive variables to be set by po
std::string rx_args, file, type, rx_ant, rx_subdev, rx_channels;
size_t total_num_samps, spb;
double rx_rate, rx_freq, rx_gain, rx_bw;
float settling;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("tx-args", po::value<std::string>(&tx_args)->default_value(""), "uhd transmit device address args")
("rx-args", po::value<std::string>(&rx_args)->default_value(""), "uhd receive device address args")
("file", po::value<std::string>(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to")
("type", po::value<std::string>(&type)->default_value("short"), "sample type in file: double, float, or short")
("nsamps", po::value<size_t>(&total_num_samps)->default_value(0), "total number of samples to receive")
("settling", po::value<float>(&settling)->default_value(float(0.2)), "settling time (seconds) before receiving")
("spb", po::value<size_t>(&spb)->default_value(0), "samples per buffer, 0 for default")
("tx-rate", po::value<double>(&tx_rate), "rate of transmit outgoing samples")
("rx-rate", po::value<double>(&rx_rate), "rate of receive incoming samples")
("tx-freq", po::value<double>(&tx_freq), "transmit RF center frequency in Hz")
("rx-freq", po::value<double>(&rx_freq), "receive RF center frequency in Hz")
("ampl", po::value<float>(&l)->default_value(float(0.3)), "amplitude of the waveform [0 to 0.7]")
("tx-gain", po::value<double>(&tx_gain), "gain for the transmit RF chain")
("rx-gain", po::value<double>(&rx_gain), "gain for the receive RF chain")
("tx-ant", po::value<std::string>(&tx_ant), "daughterboard transmit antenna selection")
("rx-ant", po::value<std::string>(&rx_ant), "daughterboard receive antenna selection")
("tx-subdev", po::value<std::string>(&tx_subdev), "daughterboard transmit subdevice specification")
("rx-subdev", po::value<std::string>(&rx_subdev), "daughterboard receive subdevice specification")
("tx-bw", po::value<double>(&tx_bw), "daughterboard transmit IF filter bandwidth in Hz")
("rx-bw", po::value<double>(&rx_bw), "daughterboard receive IF filter bandwidth in Hz")
("wave-type", po::value<std::string>(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)")
("wave-freq", po::value<double>(&wave_freq)->default_value(0), "waveform frequency in Hz")
("ref", po::value<std::string>(&ref)->default_value("internal"), "clock reference (internal, external, mimo)")
("otw", po::value<std::string>(&otw)->default_value("sc16"), "specify the over-the-wire sample mode")
("tx-channels", po::value<std::string>(&tx_channels)->default_value("0"), "which TX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
("rx-channels", po::value<std::string>(&rx_channels)->default_value("0"), "which RX channel(s) to use (specify \"0\", \"1\", \"0,1\", etc)")
("tx-int-n", "tune USRP TX with integer-N tuning")
("rx-int-n", "tune USRP RX with integer-N tuning")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("UHD TXRX Loopback to File %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the transmit usrp device with: %s...") % tx_args << std::endl;
uhd::usrp::multi_usrp::sptr tx_usrp = uhd::usrp::multi_usrp::make(tx_args);
std::cout << std::endl;
std::cout << boost::format("Creating the receive usrp device with: %s...") % rx_args << std::endl;
uhd::usrp::multi_usrp::sptr rx_usrp = uhd::usrp::multi_usrp::make(rx_args);
//detect which channels to use
std::vector<std::string> tx_channel_strings;
std::vector<size_t> tx_channel_nums;
boost::split(tx_channel_strings, tx_channels, boost::is_any_of("\"',"));
for(size_t ch = 0; ch < tx_channel_strings.size(); ch++){
size_t chan = boost::lexical_cast<int>(tx_channel_strings[ch]);
if(chan >= tx_usrp->get_tx_num_channels()){
throw std::runtime_error("Invalid TX channel(s) specified.");
}
else tx_channel_nums.push_back(boost::lexical_cast<int>(tx_channel_strings[ch]));
}
std::vector<std::string> rx_channel_strings;
std::vector<size_t> rx_channel_nums;
boost::split(rx_channel_strings, rx_channels, boost::is_any_of("\"',"));
for(size_t ch = 0; ch < rx_channel_strings.size(); ch++){
size_t chan = boost::lexical_cast<int>(rx_channel_strings[ch]);
if(chan >= rx_usrp->get_rx_num_channels()){
throw std::runtime_error("Invalid RX channel(s) specified.");
}
else rx_channel_nums.push_back(boost::lexical_cast<int>(rx_channel_strings[ch]));
}
//Lock mboard clocks
tx_usrp->set_clock_source(ref);
rx_usrp->set_clock_source(ref);
//always select the subdevice first, the channel mapping affects the other settings
if (vm.count("tx-subdev")) tx_usrp->set_tx_subdev_spec(tx_subdev);
if (vm.count("rx-subdev")) rx_usrp->set_rx_subdev_spec(rx_subdev);
std::cout << boost::format("Using Device: %s") % tx_usrp->get_pp_string() << std::endl;
std::cout << boost::format("Using Device: %s") % rx_usrp->get_pp_string() << std::endl;
//set the transmit sample rate
if (not vm.count("tx-rate")){
std::cerr << "Please specify the transmit sample rate with --tx-rate" << std::endl;
return ~0;
}
std::cout << boost::format("Setting TX Rate: %f Msps...") % (tx_rate/1e6) << std::endl;
tx_usrp->set_tx_rate(tx_rate);
std::cout << boost::format("Actual TX Rate: %f Msps...") % (tx_usrp->get_tx_rate()/1e6) << std::endl << std::endl;
//set the receive sample rate
if (not vm.count("rx-rate")){
std::cerr << "Please specify the sample rate with --rx-rate" << std::endl;
return ~0;
}
std::cout << boost::format("Setting RX Rate: %f Msps...") % (rx_rate/1e6) << std::endl;
rx_usrp->set_rx_rate(rx_rate);
std::cout << boost::format("Actual RX Rate: %f Msps...") % (rx_usrp->get_rx_rate()/1e6) << std::endl << std::endl;
//set the transmit center frequency
if (not vm.count("tx-freq")){
std::cerr << "Please specify the transmit center frequency with --tx-freq" << std::endl;
return ~0;
}
for(size_t ch = 0; ch < tx_channel_nums.size(); ch++) {
std::cout << boost::format("Setting TX Freq: %f MHz...") % (tx_freq/1e6) << std::endl;
uhd::tune_request_t tx_tune_request(tx_freq);
if(vm.count("tx-int-n")) tx_tune_request.args = uhd::device_addr_t("mode_n=integer");
tx_usrp->set_tx_freq(tx_tune_request, tx_channel_nums[ch]);
std::cout << boost::format("Actual TX Freq: %f MHz...") % (tx_usrp->get_tx_freq(tx_channel_nums[ch])/1e6) << std::endl << std::endl;
//set the rf gain
if (vm.count("tx-gain")){
std::cout << boost::format("Setting TX Gain: %f dB...") % tx_gain << std::endl;
tx_usrp->set_tx_gain(tx_gain, tx_channel_nums[ch]);
std::cout << boost::format("Actual TX Gain: %f dB...") % tx_usrp->get_tx_gain(tx_channel_nums[ch]) << std::endl << std::endl;
}
//set the IF filter bandwidth
if (vm.count("tx-bw")){
std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % tx_bw << std::endl;
tx_usrp->set_tx_bandwidth(tx_bw, tx_channel_nums[ch]);
std::cout << boost::format("Actual TX Bandwidth: %f MHz...") % tx_usrp->get_tx_bandwidth(tx_channel_nums[ch]) << std::endl << std::endl;
}
//set the antenna
if (vm.count("tx-ant")) tx_usrp->set_tx_antenna(tx_ant, tx_channel_nums[ch]);
}
//set the receive center frequency
if (not vm.count("rx-freq")){
std::cerr << "Please specify the center frequency with --rx-freq" << std::endl;
return ~0;
}
std::cout << boost::format("Setting RX Freq: %f MHz...") % (rx_freq/1e6) << std::endl;
uhd::tune_request_t rx_tune_request(rx_freq);
if(vm.count("rx-int-n")) rx_tune_request.args = uhd::device_addr_t("mode_n=integer");
rx_usrp->set_rx_freq(rx_tune_request);
std::cout << boost::format("Actual RX Freq: %f MHz...") % (rx_usrp->get_rx_freq()/1e6) << std::endl << std::endl;
//set the receive rf gain
if (vm.count("rx_gain")){
std::cout << boost::format("Setting RX Gain: %f dB...") % rx_gain << std::endl;
rx_usrp->set_rx_gain(rx_gain);
std::cout << boost::format("Actual RX Gain: %f dB...") % rx_usrp->get_rx_gain() << std::endl << std::endl;
}
//set the receive IF filter bandwidth
if (vm.count("rx_bw")){
std::cout << boost::format("Setting RX Bandwidth: %f MHz...") % rx_bw << std::endl;
rx_usrp->set_rx_bandwidth(rx_bw);
std::cout << boost::format("Actual RX Bandwidth: %f MHz...") % rx_usrp->get_rx_bandwidth() << std::endl << std::endl;
}
//set the receive antenna
if (vm.count("ant")) rx_usrp->set_rx_antenna(rx_ant);
//for the const wave, set the wave freq for small samples per period
if (wave_freq == 0 and wave_type == "CONST"){
wave_freq = tx_usrp->get_tx_rate()/2;
}
//error when the waveform is not possible to generate
if (std::abs(wave_freq) > tx_usrp->get_tx_rate()/2){
throw std::runtime_error("wave freq out of Nyquist zone");
}
if (tx_usrp->get_tx_rate()/std::abs(wave_freq) > wave_table_len/2){
throw std::runtime_error("wave freq too small for table");
}
//pre-compute the waveform values
const wave_table_class wave_table(wave_type, ampl);
const size_t step = boost::math::iround(wave_freq/tx_usrp->get_tx_rate() * wave_table_len);
size_t index = 0;
//create a transmit streamer
//linearly map channels (index0 = channel0, index1 = channel1, ...)
uhd::stream_args_t stream_args("fc32", otw);
stream_args.channels = tx_channel_nums;
uhd::tx_streamer::sptr tx_stream = tx_usrp->get_tx_stream(stream_args);
//allocate a buffer which we re-use for each channel
if (spb == 0) spb = tx_stream->get_max_num_samps()*10;
std::vector<std::complex<float> > buff(spb);
int num_channels = tx_channel_nums.size();
//setup the metadata flags
uhd::tx_metadata_t md;
md.start_of_burst = true;
md.end_of_burst = false;
md.has_time_spec = true;
md.time_spec = uhd::time_spec_t(0.1); //give us 0.1 seconds to fill the tx buffers
//Check Ref and LO Lock detect
std::vector<std::string> tx_sensor_names, rx_sensor_names;
tx_sensor_names = tx_usrp->get_tx_sensor_names(0);
if (std::find(tx_sensor_names.begin(), tx_sensor_names.end(), "lo_locked") != tx_sensor_names.end()) {
uhd::sensor_value_t lo_locked = tx_usrp->get_tx_sensor("lo_locked",0);
std::cout << boost::format("Checking TX: %s ...") % lo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(lo_locked.to_bool());
}
rx_sensor_names = rx_usrp->get_rx_sensor_names(0);
if (std::find(rx_sensor_names.begin(), rx_sensor_names.end(), "lo_locked") != rx_sensor_names.end()) {
uhd::sensor_value_t lo_locked = rx_usrp->get_rx_sensor("lo_locked",0);
std::cout << boost::format("Checking RX: %s ...") % lo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(lo_locked.to_bool());
}
tx_sensor_names = tx_usrp->get_mboard_sensor_names(0);
if ((ref == "mimo") and (std::find(tx_sensor_names.begin(), tx_sensor_names.end(), "mimo_locked") != tx_sensor_names.end())) {
uhd::sensor_value_t mimo_locked = tx_usrp->get_mboard_sensor("mimo_locked",0);
std::cout << boost::format("Checking TX: %s ...") % mimo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external") and (std::find(tx_sensor_names.begin(), tx_sensor_names.end(), "ref_locked") != tx_sensor_names.end())) {
uhd::sensor_value_t ref_locked = tx_usrp->get_mboard_sensor("ref_locked",0);
std::cout << boost::format("Checking TX: %s ...") % ref_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
rx_sensor_names = rx_usrp->get_mboard_sensor_names(0);
if ((ref == "mimo") and (std::find(rx_sensor_names.begin(), rx_sensor_names.end(), "mimo_locked") != rx_sensor_names.end())) {
uhd::sensor_value_t mimo_locked = rx_usrp->get_mboard_sensor("mimo_locked",0);
std::cout << boost::format("Checking RX: %s ...") % mimo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external") and (std::find(rx_sensor_names.begin(), rx_sensor_names.end(), "ref_locked") != rx_sensor_names.end())) {
uhd::sensor_value_t ref_locked = rx_usrp->get_mboard_sensor("ref_locked",0);
std::cout << boost::format("Checking RX: %s ...") % ref_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
if (total_num_samps == 0){
std::signal(SIGINT, &sig_int_handler);
std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
}
//reset usrp time to prepare for transmit/receive
std::cout << boost::format("Setting device timestamp to 0...") << std::endl;
tx_usrp->set_time_now(uhd::time_spec_t(0.0));
//start transmit worker thread
boost::thread_group transmit_thread;
transmit_thread.create_thread(boost::bind(&transmit_worker, buff, wave_table, tx_stream, md, step, index, num_channels));
//recv to file
if (type == "double") recv_to_file<std::complex<double> >(rx_usrp, "fc64", otw, file, spb, total_num_samps, settling, rx_channel_nums);
else if (type == "float") recv_to_file<std::complex<float> >(rx_usrp, "fc32", otw, file, spb, total_num_samps, settling, rx_channel_nums);
else if (type == "short") recv_to_file<std::complex<short> >(rx_usrp, "sc16", otw, file, spb, total_num_samps, settling, rx_channel_nums);
else {
//clean up transmit worker
stop_signal_called = true;
transmit_thread.join_all();
throw std::runtime_error("Unknown type " + type);
}
//clean up transmit worker
stop_signal_called = true;
transmit_thread.join_all();
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}
|