1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
//
// Copyright 2010-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/usrp/single_usrp.hpp>
#include <boost/program_options.hpp>
#include <boost/thread/thread_time.hpp> //system time
#include <boost/math/special_functions/round.hpp>
#include <boost/format.hpp>
#include <boost/function.hpp>
#include <iostream>
#include <complex>
#include <cmath>
namespace po = boost::program_options;
/***********************************************************************
* Waveform generators
**********************************************************************/
float gen_const(float){
return 1;
}
float gen_square(float x){
return float((std::fmod(x, 1) < float(0.5))? 0 : 1);
}
float gen_ramp(float x){
return std::fmod(x, 1)*2 - 1;
}
#define sine_table_len 2048
static float sine_table[sine_table_len];
UHD_STATIC_BLOCK(gen_sine_table){
static const float m_pi = std::acos(float(-1));
for (size_t i = 0; i < sine_table_len; i++)
sine_table[i] = std::sin((2*m_pi*i)/sine_table_len);
}
float gen_sine(float x){
return sine_table[size_t(x*sine_table_len)%sine_table_len];
}
int UHD_SAFE_MAIN(int argc, char *argv[]){
uhd::set_thread_priority_safe();
//variables to be set by po
std::string args, wave_type;
size_t total_duration, spb;
double rate, freq, gain, wave_freq;
float ampl;
//setup the program options
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "single uhd device address args")
("duration", po::value<size_t>(&total_duration)->default_value(3), "number of seconds to transmit")
("spb", po::value<size_t>(&spb)->default_value(10000), "samples per buffer")
("rate", po::value<double>(&rate)->default_value(1.5e6), "rate of outgoing samples")
("freq", po::value<double>(&freq)->default_value(0), "rf center frequency in Hz")
("ampl", po::value<float>(&l)->default_value(float(0.3)), "amplitude of the waveform")
("gain", po::value<double>(&gain)->default_value(0), "gain for the RF chain")
("wave-type", po::value<std::string>(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)")
("wave-freq", po::value<double>(&wave_freq)->default_value(0), "waveform frequency in Hz")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::single_usrp::sptr sdev = uhd::usrp::single_usrp::make(args);
uhd::device::sptr dev = sdev->get_device();
std::cout << boost::format("Using Device: %s") % sdev->get_pp_string() << std::endl;
//set the tx sample rate
std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate/1e6) << std::endl;
sdev->set_tx_rate(rate);
std::cout << boost::format("Actual TX Rate: %f Msps...") % (sdev->get_tx_rate()/1e6) << std::endl << std::endl;
//set the tx center frequency
std::cout << boost::format("Setting TX Freq: %f Mhz...") % (freq/1e6) << std::endl;
sdev->set_tx_freq(freq);
std::cout << boost::format("Actual TX Freq: %f Mhz...") % (sdev->get_tx_freq()/1e6) << std::endl << std::endl;
//set the tx rf gain
std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl;
sdev->set_tx_gain(gain);
std::cout << boost::format("Actual TX Gain: %f dB...") % sdev->get_tx_gain() << std::endl << std::endl;
//for the const wave, set the wave freq for small samples per period
if (wave_freq == 0 and wave_type == "CONST"){
wave_freq = sdev->get_tx_rate()/2;
}
//error when the waveform is not possible to generate
if (std::abs(wave_freq) > sdev->get_tx_rate()/2){
throw std::runtime_error("wave freq out of Nyquist zone");
}
if (sdev->get_tx_rate()/std::abs(wave_freq) > sine_table_len/2 and wave_type == "SINE"){
throw std::runtime_error("sine freq too small for table");
}
//store the generator function for the selected waveform
boost::function<float(float)> wave_gen;
if (wave_type == "CONST") wave_gen = &gen_const;
else if (wave_type == "SQUARE") wave_gen = &gen_square;
else if (wave_type == "RAMP") wave_gen = &gen_ramp;
else if (wave_type == "SINE") wave_gen = &gen_sine;
else throw std::runtime_error("unknown waveform type: " + wave_type);
//allocate the buffer and precalculate values
std::vector<std::complex<float> > buff(spb);
const float cps = float(wave_freq/sdev->get_tx_rate());
const float i_off = (wave_freq > 0)? float(0.25) : 0;
const float q_off = (wave_freq < 0)? float(0.25) : 0;
float theta = 0;
//setup the metadata flags
uhd::tx_metadata_t md;
md.start_of_burst = false; //never SOB when continuous
md.end_of_burst = false;
//send the data in multiple packets
boost::system_time end_time(boost::get_system_time() + boost::posix_time::seconds(total_duration));
while(end_time > boost::get_system_time()){
//fill the buffer with the waveform
for (size_t n = 0; n < buff.size(); n++){
buff[n] = std::complex<float>(
ampl*wave_gen(i_off + theta),
ampl*wave_gen(q_off + theta)
);
theta += cps;
}
//bring the theta back into range [0, 1)
theta = std::fmod(theta, 1);
//send the entire contents of the buffer
dev->send(
&buff.front(), buff.size(), md,
uhd::io_type_t::COMPLEX_FLOAT32,
uhd::device::SEND_MODE_FULL_BUFF
);
}
//send a mini EOB packet
md.start_of_burst = false;
md.end_of_burst = true;
dev->send(NULL, 0, md,
uhd::io_type_t::COMPLEX_FLOAT32,
uhd::device::SEND_MODE_FULL_BUFF
);
//finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return 0;
}
|