aboutsummaryrefslogtreecommitdiffstats
path: root/host/examples/tx_waveforms.cpp
blob: ef878722c07ec7bb8cdeed20df6b32c34213b37d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//
// Copyright 2010-2012,2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include "wavetable.hpp"
#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/exception.hpp>
#include <boost/program_options.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/foreach.hpp>
#include <boost/format.hpp>
#include <boost/thread.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#include <stdint.h>
#include <iostream>
#include <csignal>

namespace po = boost::program_options;

/***********************************************************************
 * Signal handlers
 **********************************************************************/
static bool stop_signal_called = false;
void sig_int_handler(int){stop_signal_called = true;}

/***********************************************************************
 * Main function
 **********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
    uhd::set_thread_priority_safe();

    //variables to be set by po
    std::string args, wave_type, ant, subdev, ref, pps, otw, channel_list;
    uint64_t total_num_samps, spb;
    double rate, freq, gain, wave_freq, bw;
    float ampl;

    //setup the program options
    po::options_description desc("Allowed options");
    desc.add_options()
        ("help", "help message")
        ("args", po::value<std::string>(&args)->default_value(""), "single uhd device address args")
        ("spb", po::value<uint64_t>(&spb)->default_value(0), "samples per buffer, 0 for default")
        ("nsamps", po::value<uint64_t>(&total_num_samps)->default_value(0), "total number of samples to transmit")
        ("rate", po::value<double>(&rate), "rate of outgoing samples")
        ("freq", po::value<double>(&freq), "RF center frequency in Hz")
        ("ampl", po::value<float>(&ampl)->default_value(float(0.3)), "amplitude of the waveform [0 to 0.7]")
        ("gain", po::value<double>(&gain), "gain for the RF chain")
        ("ant", po::value<std::string>(&ant), "antenna selection")
        ("subdev", po::value<std::string>(&subdev), "subdevice specification")
        ("bw", po::value<double>(&bw), "analog frontend filter bandwidth in Hz")
        ("wave-type", po::value<std::string>(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)")
        ("wave-freq", po::value<double>(&wave_freq)->default_value(0), "waveform frequency in Hz")
        ("ref", po::value<std::string>(&ref)->default_value("internal"), "clock reference (internal, external, mimo, gpsdo)")
        ("pps", po::value<std::string>(&pps), "PPS source (internal, external, mimo, gpsdo)")
        ("otw", po::value<std::string>(&otw)->default_value("sc16"), "specify the over-the-wire sample mode")
        ("channels", po::value<std::string>(&channel_list)->default_value("0"), "which channels to use (specify \"0\", \"1\", \"0,1\", etc)")
        ("int-n", "tune USRP with integer-N tuning")
    ;
    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    //print the help message
    if (vm.count("help")){
        std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl;
        return ~0;
    }

    //create a usrp device
    std::cout << std::endl;
    std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
    uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);

    //detect which channels to use
    std::vector<std::string> channel_strings;
    std::vector<size_t> channel_nums;
    boost::split(channel_strings, channel_list, boost::is_any_of("\"',"));
    for(size_t ch = 0; ch < channel_strings.size(); ch++){
        size_t chan = boost::lexical_cast<int>(channel_strings[ch]);
        if(chan >= usrp->get_tx_num_channels())
            throw std::runtime_error("Invalid channel(s) specified.");
        else
            channel_nums.push_back(boost::lexical_cast<int>(channel_strings[ch]));
    }


    //Lock mboard clocks
    usrp->set_clock_source(ref);

    //always select the subdevice first, the channel mapping affects the other settings
    if (vm.count("subdev")) usrp->set_tx_subdev_spec(subdev);

    std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;

    //set the sample rate
    if (not vm.count("rate")){
        std::cerr << "Please specify the sample rate with --rate" << std::endl;
        return ~0;
    }
    std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate/1e6) << std::endl;
    usrp->set_tx_rate(rate);
    std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate()/1e6) << std::endl << std::endl;

    //set the center frequency
    if (not vm.count("freq")){
        std::cerr << "Please specify the center frequency with --freq" << std::endl;
        return ~0;
    }

    for(size_t ch = 0; ch < channel_nums.size(); ch++) {
        std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq/1e6) << std::endl;
        uhd::tune_request_t tune_request(freq);
        if(vm.count("int-n")) tune_request.args = uhd::device_addr_t("mode_n=integer");
        usrp->set_tx_freq(tune_request, channel_nums[ch]);
        std::cout << boost::format("Actual TX Freq: %f MHz...") % (usrp->get_tx_freq(channel_nums[ch])/1e6) << std::endl << std::endl;

        //set the rf gain
        if (vm.count("gain")){
            std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl;
            usrp->set_tx_gain(gain, channel_nums[ch]);
            std::cout << boost::format("Actual TX Gain: %f dB...") % usrp->get_tx_gain(channel_nums[ch]) << std::endl << std::endl;
        }

        //set the analog frontend filter bandwidth
        if (vm.count("bw")){
            std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % bw << std::endl;
            usrp->set_tx_bandwidth(bw, channel_nums[ch]);
            std::cout << boost::format("Actual TX Bandwidth: %f MHz...") % usrp->get_tx_bandwidth(channel_nums[ch]) << std::endl << std::endl;
        }

        //set the antenna
        if (vm.count("ant")) usrp->set_tx_antenna(ant, channel_nums[ch]);
    }

    boost::this_thread::sleep(boost::posix_time::seconds(1)); //allow for some setup time

    //for the const wave, set the wave freq for small samples per period
    if (wave_freq == 0 and wave_type == "CONST"){
        wave_freq = usrp->get_tx_rate()/2;
    }

    //error when the waveform is not possible to generate
    if (std::abs(wave_freq) > usrp->get_tx_rate()/2){
        throw std::runtime_error("wave freq out of Nyquist zone");
    }
    if (usrp->get_tx_rate()/std::abs(wave_freq) > wave_table_len/2){
        throw std::runtime_error("wave freq too small for table");
    }

    //pre-compute the waveform values
    const wave_table_class wave_table(wave_type, ampl);
    const size_t step = boost::math::iround(wave_freq/usrp->get_tx_rate() * wave_table_len);
    size_t index = 0;

    //create a transmit streamer
    //linearly map channels (index0 = channel0, index1 = channel1, ...)
    uhd::stream_args_t stream_args("fc32", otw);
    stream_args.channels = channel_nums;
    uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);

    //allocate a buffer which we re-use for each channel
    if (spb == 0) spb = tx_stream->get_max_num_samps()*10;
    std::vector<std::complex<float> > buff(spb);
    std::vector<std::complex<float> *> buffs(channel_nums.size(), &buff.front());

    std::cout << boost::format("Setting device timestamp to 0...") << std::endl;
    if (channel_nums.size() > 1)
    {
        // Sync times
        if (pps == "mimo")
        {
            UHD_ASSERT_THROW(usrp->get_num_mboards() == 2);

            //make mboard 1 a slave over the MIMO Cable
            usrp->set_time_source("mimo", 1);

            //set time on the master (mboard 0)
            usrp->set_time_now(uhd::time_spec_t(0.0), 0);

            //sleep a bit while the slave locks its time to the master
            boost::this_thread::sleep(boost::posix_time::milliseconds(100));
        }
        else
        {
            if (pps == "internal" or pps == "external" or pps == "gpsdo")
                usrp->set_time_source(pps);
            usrp->set_time_unknown_pps(uhd::time_spec_t(0.0));
            boost::this_thread::sleep(boost::posix_time::seconds(1)); //wait for pps sync pulse
        }
    }
    else
    {
        usrp->set_time_now(0.0);
    }

    //Check Ref and LO Lock detect
    std::vector<std::string> sensor_names;
    sensor_names = usrp->get_tx_sensor_names(0);
    if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end()) {
        uhd::sensor_value_t lo_locked = usrp->get_tx_sensor("lo_locked",0);
        std::cout << boost::format("Checking TX: %s ...") % lo_locked.to_pp_string() << std::endl;
        UHD_ASSERT_THROW(lo_locked.to_bool());
    }
    sensor_names = usrp->get_mboard_sensor_names(0);
    if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) {
        uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked",0);
        std::cout << boost::format("Checking TX: %s ...") % mimo_locked.to_pp_string() << std::endl;
        UHD_ASSERT_THROW(mimo_locked.to_bool());
    }
    if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) {
        uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked",0);
        std::cout << boost::format("Checking TX: %s ...") % ref_locked.to_pp_string() << std::endl;
        UHD_ASSERT_THROW(ref_locked.to_bool());
    }

    std::signal(SIGINT, &sig_int_handler);
    std::cout << "Press Ctrl + C to stop streaming..." << std::endl;

    // Set up metadata. We start streaming a bit in the future
    // to allow MIMO operation:
    uhd::tx_metadata_t md;
    md.start_of_burst = true;
    md.end_of_burst   = false;
    md.has_time_spec  = true;
    md.time_spec = usrp->get_time_now() + uhd::time_spec_t(0.1);

    //send data until the signal handler gets called
    //or if we accumulate the number of samples specified (unless it's 0)
    uint64_t num_acc_samps = 0;
    while(true){

        if (stop_signal_called) break;
        if (total_num_samps > 0 and num_acc_samps >= total_num_samps) break;

        //fill the buffer with the waveform
        for (size_t n = 0; n < buff.size(); n++){
            buff[n] = wave_table(index += step);
        }

        //send the entire contents of the buffer
        num_acc_samps += tx_stream->send(
            buffs, buff.size(), md
        );

        md.start_of_burst = false;
        md.has_time_spec = false;
    }

    //send a mini EOB packet
    md.end_of_burst = true;
    tx_stream->send("", 0, md);

    //finished
    std::cout << std::endl << "Done!" << std::endl << std::endl;
    return EXIT_SUCCESS;
}