1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
//
// Copyright 2010-2012,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "wavetable.hpp"
#include <uhd/exception.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/utils/thread.hpp>
#include <stdint.h>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/program_options.hpp>
#include <chrono>
#include <csignal>
#include <iostream>
#include <string>
#include <thread>
namespace po = boost::program_options;
/***********************************************************************
* Signal handlers
**********************************************************************/
static bool stop_signal_called = false;
void sig_int_handler(int)
{
stop_signal_called = true;
}
/***********************************************************************
* Main function
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char* argv[])
{
// variables to be set by po
std::string args, wave_type, ant, subdev, ref, pps, otw, channel_list;
uint64_t total_num_samps;
size_t spb;
double rate, freq, gain, wave_freq, bw, lo_offset;
float ampl;
// setup the program options
po::options_description desc("Allowed options");
// clang-format off
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "single uhd device address args")
("spb", po::value<size_t>(&spb)->default_value(0), "samples per buffer, 0 for default")
("nsamps", po::value<uint64_t>(&total_num_samps)->default_value(0), "total number of samples to transmit")
("rate", po::value<double>(&rate), "rate of outgoing samples")
("freq", po::value<double>(&freq), "RF center frequency in Hz")
("lo-offset", po::value<double>(&lo_offset)->default_value(0.0),
"Offset for frontend LO in Hz (optional)")
("ampl", po::value<float>(&l)->default_value(float(0.3)), "amplitude of the waveform [0 to 0.7]")
("gain", po::value<double>(&gain), "gain for the RF chain")
("ant", po::value<std::string>(&ant), "antenna selection")
("subdev", po::value<std::string>(&subdev), "subdevice specification")
("bw", po::value<double>(&bw), "analog frontend filter bandwidth in Hz")
("wave-type", po::value<std::string>(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)")
("wave-freq", po::value<double>(&wave_freq)->default_value(0), "waveform frequency in Hz")
("ref", po::value<std::string>(&ref)->default_value("internal"), "clock reference (internal, external, mimo, gpsdo)")
("pps", po::value<std::string>(&pps), "PPS source (internal, external, mimo, gpsdo)")
("otw", po::value<std::string>(&otw)->default_value("sc16"), "specify the over-the-wire sample mode")
("channels", po::value<std::string>(&channel_list)->default_value("0"), "which channels to use (specify \"0\", \"1\", \"0,1\", etc)")
("int-n", "tune USRP with integer-N tuning")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// print the help message
if (vm.count("help")) {
std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl;
return ~0;
}
// create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args
<< std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
// always select the subdevice first, the channel mapping affects the other settings
if (vm.count("subdev"))
usrp->set_tx_subdev_spec(subdev);
// detect which channels to use
std::vector<std::string> channel_strings;
std::vector<size_t> channel_nums;
boost::split(channel_strings, channel_list, boost::is_any_of("\"',"));
for (size_t ch = 0; ch < channel_strings.size(); ch++) {
size_t chan = std::stoi(channel_strings[ch]);
if (chan >= usrp->get_tx_num_channels())
throw std::runtime_error("Invalid channel(s) specified.");
else
channel_nums.push_back(std::stoi(channel_strings[ch]));
}
// Lock mboard clocks
usrp->set_clock_source(ref);
std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
// set the sample rate
if (not vm.count("rate")) {
std::cerr << "Please specify the sample rate with --rate" << std::endl;
return ~0;
}
std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate / 1e6) << std::endl;
usrp->set_tx_rate(rate);
std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate() / 1e6)
<< std::endl
<< std::endl;
// set the center frequency
if (not vm.count("freq")) {
std::cerr << "Please specify the center frequency with --freq" << std::endl;
return ~0;
}
for (size_t ch = 0; ch < channel_nums.size(); ch++) {
std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq / 1e6)
<< std::endl;
std::cout << boost::format("Setting TX LO Offset: %f MHz...") % (lo_offset / 1e6)
<< std::endl;
uhd::tune_request_t tune_request(freq, lo_offset);
if (vm.count("int-n"))
tune_request.args = uhd::device_addr_t("mode_n=integer");
usrp->set_tx_freq(tune_request, channel_nums[ch]);
std::cout << boost::format("Actual TX Freq: %f MHz...")
% (usrp->get_tx_freq(channel_nums[ch]) / 1e6)
<< std::endl
<< std::endl;
// set the rf gain
if (vm.count("gain")) {
std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl;
usrp->set_tx_gain(gain, channel_nums[ch]);
std::cout << boost::format("Actual TX Gain: %f dB...")
% usrp->get_tx_gain(channel_nums[ch])
<< std::endl
<< std::endl;
}
// set the analog frontend filter bandwidth
if (vm.count("bw")) {
std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % bw
<< std::endl;
usrp->set_tx_bandwidth(bw, channel_nums[ch]);
std::cout << boost::format("Actual TX Bandwidth: %f MHz...")
% usrp->get_tx_bandwidth(channel_nums[ch])
<< std::endl
<< std::endl;
}
// set the antenna
if (vm.count("ant"))
usrp->set_tx_antenna(ant, channel_nums[ch]);
}
std::this_thread::sleep_for(std::chrono::seconds(1)); // allow for some setup time
// for the const wave, set the wave freq for small samples per period
if (wave_freq == 0) {
if (wave_type == "CONST") {
wave_freq = usrp->get_tx_rate() / 2;
} else {
throw std::runtime_error(
"wave freq cannot be 0 with wave type other than CONST");
}
}
// error when the waveform is not possible to generate
if (std::abs(wave_freq) > usrp->get_tx_rate() / 2) {
throw std::runtime_error("wave freq out of Nyquist zone");
}
if (usrp->get_tx_rate() / std::abs(wave_freq) > wave_table_len / 2) {
throw std::runtime_error("wave freq too small for table");
}
// pre-compute the waveform values
const wave_table_class wave_table(wave_type, ampl);
const size_t step =
boost::math::iround(wave_freq / usrp->get_tx_rate() * wave_table_len);
size_t index = 0;
// create a transmit streamer
// linearly map channels (index0 = channel0, index1 = channel1, ...)
uhd::stream_args_t stream_args("fc32", otw);
stream_args.channels = channel_nums;
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
// allocate a buffer which we re-use for each channel
if (spb == 0) {
spb = tx_stream->get_max_num_samps() * 10;
}
std::vector<std::complex<float>> buff(spb);
std::vector<std::complex<float>*> buffs(channel_nums.size(), &buff.front());
// pre-fill the buffer with the waveform
for (size_t n = 0; n < buff.size(); n++) {
buff[n] = wave_table(index += step);
}
std::cout << boost::format("Setting device timestamp to 0...") << std::endl;
if (channel_nums.size() > 1) {
// Sync times
if (pps == "mimo") {
UHD_ASSERT_THROW(usrp->get_num_mboards() == 2);
// make mboard 1 a slave over the MIMO Cable
usrp->set_time_source("mimo", 1);
// set time on the master (mboard 0)
usrp->set_time_now(uhd::time_spec_t(0.0), 0);
// sleep a bit while the slave locks its time to the master
std::this_thread::sleep_for(std::chrono::milliseconds(100));
} else {
if (pps == "internal" or pps == "external" or pps == "gpsdo")
usrp->set_time_source(pps);
usrp->set_time_unknown_pps(uhd::time_spec_t(0.0));
std::this_thread::sleep_for(
std::chrono::seconds(1)); // wait for pps sync pulse
}
} else {
usrp->set_time_now(0.0);
}
// Check Ref and LO Lock detect
std::vector<std::string> sensor_names;
const size_t tx_sensor_chan = channel_nums.empty() ? 0 : channel_nums[0];
sensor_names = usrp->get_tx_sensor_names(tx_sensor_chan);
if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked")
!= sensor_names.end()) {
uhd::sensor_value_t lo_locked = usrp->get_tx_sensor("lo_locked", tx_sensor_chan);
std::cout << boost::format("Checking TX: %s ...") % lo_locked.to_pp_string()
<< std::endl;
UHD_ASSERT_THROW(lo_locked.to_bool());
}
const size_t mboard_sensor_idx = 0;
sensor_names = usrp->get_mboard_sensor_names(mboard_sensor_idx);
if ((ref == "mimo")
and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked")
!= sensor_names.end())) {
uhd::sensor_value_t mimo_locked =
usrp->get_mboard_sensor("mimo_locked", mboard_sensor_idx);
std::cout << boost::format("Checking TX: %s ...") % mimo_locked.to_pp_string()
<< std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external")
and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked")
!= sensor_names.end())) {
uhd::sensor_value_t ref_locked =
usrp->get_mboard_sensor("ref_locked", mboard_sensor_idx);
std::cout << boost::format("Checking TX: %s ...") % ref_locked.to_pp_string()
<< std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
std::signal(SIGINT, &sig_int_handler);
std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
// Set up metadata. We start streaming a bit in the future
// to allow MIMO operation:
uhd::tx_metadata_t md;
md.start_of_burst = true;
md.end_of_burst = false;
md.has_time_spec = true;
md.time_spec = usrp->get_time_now() + uhd::time_spec_t(0.1);
// send data until the signal handler gets called
// or if we accumulate the number of samples specified (unless it's 0)
uint64_t num_acc_samps = 0;
while (true) {
// Break on the end of duration or CTRL-C
if (stop_signal_called) {
break;
}
// Break when we've received nsamps
if (total_num_samps > 0 and num_acc_samps >= total_num_samps) {
break;
}
// send the entire contents of the buffer
num_acc_samps += tx_stream->send(buffs, buff.size(), md);
// fill the buffer with the waveform
for (size_t n = 0; n < buff.size(); n++) {
buff[n] = wave_table(index += step);
}
md.start_of_burst = false;
md.has_time_spec = false;
}
// send a mini EOB packet
md.end_of_burst = true;
tx_stream->send("", 0, md);
// finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}
|