summaryrefslogtreecommitdiffstats
path: root/host/examples/tx_waveforms.cpp
blob: b78cc7d0a43302366c62c8813f61e39f96b75278 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//
// Copyright 2010-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <boost/program_options.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/foreach.hpp>
#include <boost/format.hpp>
#include <iostream>
#include <complex>
#include <csignal>
#include <cmath>

namespace po = boost::program_options;

/***********************************************************************
 * Signal handlers
 **********************************************************************/
static bool stop_signal_called = false;
void sig_int_handler(int){stop_signal_called = true;}

/***********************************************************************
 * Waveform generators
 **********************************************************************/
static const size_t wave_table_len = 8192;

class wave_table_class{
public:
    wave_table_class(const std::string &wave_type, const float ampl):
        _wave_table(wave_table_len)
    {
        //compute real wave table with 1.0 amplitude
        std::vector<double> real_wave_table(wave_table_len);
        if (wave_type == "CONST"){
            for (size_t i = 0; i < wave_table_len; i++)
                real_wave_table[i] = 1.0;
        }
        else if (wave_type == "SQUARE"){
            for (size_t i = 0; i < wave_table_len; i++)
                real_wave_table[i] = (i < wave_table_len/2)? 0.0 : 1.0;
        }
        else if (wave_type == "RAMP"){
            for (size_t i = 0; i < wave_table_len; i++)
                real_wave_table[i] = 2.0*i/(wave_table_len-1) - 1.0;
        }
        else if (wave_type == "SINE"){
            static const double tau = 2*std::acos(-1.0);
            for (size_t i = 0; i < wave_table_len; i++)
                real_wave_table[i] = std::sin((tau*i)/wave_table_len);
        }
        else throw std::runtime_error("unknown waveform type: " + wave_type);

        //compute i and q pairs with 90% offset and scale to amplitude
        for (size_t i = 0; i < wave_table_len; i++){
            const size_t q = (i+(3*wave_table_len)/4)%wave_table_len;
            _wave_table[i] = std::complex<float>(ampl*real_wave_table[i], ampl*real_wave_table[q]);
        }
    }

    inline std::complex<float> operator()(const double theta) const{
        return _wave_table[unsigned(boost::math::iround(theta*wave_table_len))%wave_table_len];
    }

private:
    std::vector<std::complex<float> > _wave_table;
};

/***********************************************************************
 * Main function
 **********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
    uhd::set_thread_priority_safe();

    //variables to be set by po
    std::string args, wave_type, ant, subdev;
    size_t spb;
    double rate, freq, gain, wave_freq, bw;
    float ampl;

    //setup the program options
    po::options_description desc("Allowed options");
    desc.add_options()
        ("help", "help message")
        ("args", po::value<std::string>(&args)->default_value(""), "single uhd device address args")
        ("spb", po::value<size_t>(&spb)->default_value(10000), "samples per buffer")
        ("rate", po::value<double>(&rate), "rate of outgoing samples")
        ("freq", po::value<double>(&freq), "RF center frequency in Hz")
        ("ampl", po::value<float>(&ampl)->default_value(float(0.3)), "amplitude of the waveform")
        ("gain", po::value<double>(&gain), "gain for the RF chain")
        ("ant", po::value<std::string>(&ant), "daughterboard antenna selection")
        ("subdev", po::value<std::string>(&subdev), "daughterboard subdevice specification")
        ("bw", po::value<double>(&bw), "daughterboard IF filter bandwidth in Hz")
        ("wave-type", po::value<std::string>(&wave_type)->default_value("CONST"), "waveform type (CONST, SQUARE, RAMP, SINE)")
        ("wave-freq", po::value<double>(&wave_freq)->default_value(0), "waveform frequency in Hz")
    ;
    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    //print the help message
    if (vm.count("help")){
        std::cout << boost::format("UHD TX Waveforms %s") % desc << std::endl;
        return ~0;
    }

    //create a usrp device
    std::cout << std::endl;
    std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
    uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);

    //always select the subdevice first, the channel mapping affects the other settings
    if (vm.count("subdev")) usrp->set_tx_subdev_spec(subdev);

    std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;

    //set the sample rate
    if (not vm.count("rate")){
        std::cerr << "Please specify the sample rate with --rate" << std::endl;
        return ~0;
    }
    std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate/1e6) << std::endl;
    usrp->set_tx_rate(rate);
    std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate()/1e6) << std::endl << std::endl;

    //set the center frequency
    if (not vm.count("freq")){
        std::cerr << "Please specify the center frequency with --freq" << std::endl;
        return ~0;
    }

    for(size_t chan = 0; chan < usrp->get_tx_num_channels(); chan++) {
        std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq/1e6) << std::endl;
        usrp->set_tx_freq(freq, chan);
        std::cout << boost::format("Actual TX Freq: %f MHz...") % (usrp->get_tx_freq(chan)/1e6) << std::endl << std::endl;

        //set the rf gain
        if (vm.count("gain")){
            std::cout << boost::format("Setting TX Gain: %f dB...") % gain << std::endl;
            usrp->set_tx_gain(gain, chan);
            std::cout << boost::format("Actual TX Gain: %f dB...") % usrp->get_tx_gain(chan) << std::endl << std::endl;
        }

        //set the IF filter bandwidth
        if (vm.count("bw")){
            std::cout << boost::format("Setting TX Bandwidth: %f MHz...") % bw << std::endl;
            usrp->set_tx_bandwidth(bw, chan);
            std::cout << boost::format("Actual TX Bandwidth: %f MHz...") % usrp->get_tx_bandwidth(chan) << std::endl << std::endl;
        }

        //set the antenna
        if (vm.count("ant")) usrp->set_tx_antenna(ant, chan);
    }

    //for the const wave, set the wave freq for small samples per period
    if (wave_freq == 0 and wave_type == "CONST"){
        wave_freq = usrp->get_tx_rate()/2;
    }

    //error when the waveform is not possible to generate
    if (std::abs(wave_freq) > usrp->get_tx_rate()/2){
        throw std::runtime_error("wave freq out of Nyquist zone");
    }
    if (usrp->get_tx_rate()/std::abs(wave_freq) > wave_table_len/2){
        throw std::runtime_error("wave freq too small for table");
    }

    //pre-compute the waveform values
    const wave_table_class wave_table(wave_type, ampl);
    const double cps = wave_freq/usrp->get_tx_rate();
    double theta = 0;

    //allocate a buffer which we re-use for each channel
    std::vector<std::complex<float> > buff(spb);
    std::vector<std::complex<float> *> buffs(usrp->get_tx_num_channels(), &buff.front());

    //setup the metadata flags
    uhd::tx_metadata_t md;
    md.start_of_burst = true;
    md.end_of_burst   = false;
    md.has_time_spec  = true;
    md.time_spec = uhd::time_spec_t(0.1);

    std::cout << boost::format("Setting device timestamp to 0...") << std::endl;
    usrp->set_time_now(uhd::time_spec_t(0.0));

    std::signal(SIGINT, &sig_int_handler);
    std::cout << "Press Ctrl + C to stop streaming..." << std::endl;

    //send data until the signal handler gets called
    while(not stop_signal_called){
        //fill the buffer with the waveform
        for (size_t n = 0; n < buff.size(); n++){
            buff[n] = wave_table(theta += cps);
        }

        //bring the theta back into range [0, 1)
        theta = std::fmod(theta, 1);

        //send the entire contents of the buffer
        usrp->get_device()->send(
            buffs, buff.size(), md,
            uhd::io_type_t::COMPLEX_FLOAT32,
            uhd::device::SEND_MODE_FULL_BUFF
        );

        md.start_of_burst = false;
        md.has_time_spec = false;
    }

    //send a mini EOB packet
    md.end_of_burst = true;
    usrp->get_device()->send("", 0, md,
        uhd::io_type_t::COMPLEX_FLOAT32,
        uhd::device::SEND_MODE_FULL_BUFF
    );

    //finished
    std::cout << std::endl << "Done!" << std::endl << std::endl;
    return 0;
}