1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
//
// Copyright 2010-2011,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/thread.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <boost/program_options.hpp>
#include <boost/thread/thread.hpp>
#include <complex>
#include <csignal>
#include <iostream>
namespace po = boost::program_options;
static bool stop_signal_called = false;
void sig_int_handler(int)
{
stop_signal_called = true;
}
int UHD_SAFE_MAIN(int argc, char* argv[])
{
// variables to be set by po
std::string args, channel_list;
double seconds_in_future;
size_t total_num_samps;
double rate;
float ampl;
double freq;
double rep_rate;
double gain;
// setup the program options
po::options_description desc("Allowed options");
// clang-format off
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "multi uhd device address args")
("secs", po::value<double>(&seconds_in_future)->default_value(1.5), "delay before first burst")
("repeat", "repeat burst")
("rep-delay", po::value<double>(&rep_rate)->default_value(0.5), "delay between bursts")
("nsamps", po::value<size_t>(&total_num_samps)->default_value(10000), "total number of samples to transmit")
("rate", po::value<double>(&rate)->default_value(100e6/16), "rate of outgoing samples")
("ampl", po::value<float>(&l)->default_value(float(0.3)), "amplitude of each sample")
("freq", po::value<double>(&freq)->default_value(0), "center frequency")
("gain", po::value<double>(&gain)->default_value(0), "gain")
("dilv", "specify to disable inner-loop verbose")
("channels", po::value<std::string>(&channel_list)->default_value("0"), "which channel(s) to use (specify \"0\", \"1\", \"0,1\", etc")
("int-n", "tune USRP with integer-n tuning")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// print the help message
if (vm.count("help")) {
std::cout << boost::format("UHD TX Timed Samples %s") % desc << std::endl;
return ~0;
}
bool verbose = vm.count("dilv") == 0;
bool repeat = vm.count("repeat") != 0;
// create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args
<< std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
// detect which channels to use
std::vector<std::string> channel_strings;
std::vector<size_t> channel_nums;
boost::split(channel_strings, channel_list, boost::is_any_of("\"',"));
for (size_t ch = 0; ch < channel_strings.size(); ch++) {
size_t chan = std::stoi(channel_strings[ch]);
if (chan >= usrp->get_tx_num_channels()) {
throw std::runtime_error("Invalid channel(s) specified.");
} else
channel_nums.push_back(std::stoi(channel_strings[ch]));
}
// set the tx sample rate
std::cout << boost::format("Setting TX Rate: %f Msps...") % (rate / 1e6) << std::endl;
usrp->set_tx_rate(rate);
std::cout << boost::format("Actual TX Rate: %f Msps...") % (usrp->get_tx_rate() / 1e6)
<< std::endl
<< std::endl;
std::cout << boost::format("Setting TX Freq: %f MHz...") % (freq / 1e6) << std::endl;
for (size_t i = 0; i < channel_nums.size(); i++) {
uhd::tune_request_t tune_request(freq);
if (vm.count("int-n"))
tune_request.args = uhd::device_addr_t("mode_n=integer");
usrp->set_tx_freq(tune_request, channel_nums[i]);
}
std::cout << boost::format("Actual TX Freq: %f MHz...") % (usrp->get_tx_freq() / 1e6)
<< std::endl
<< std::endl;
std::cout << boost::format("Setting TX Gain: %f...") % (gain) << std::endl;
for (size_t i = 0; i < channel_nums.size(); i++)
usrp->set_tx_gain(gain, channel_nums[i]);
std::cout << boost::format("Actual TX Gain: %f...") % (usrp->get_tx_gain())
<< std::endl
<< std::endl;
std::cout << boost::format("Setting device timestamp to 0...") << std::endl;
usrp->set_time_now(uhd::time_spec_t(0.0));
// create a transmit streamer
uhd::stream_args_t stream_args("fc32"); // complex floats
stream_args.channels = channel_nums;
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
// allocate buffer with data to send
const size_t spb = tx_stream->get_max_num_samps();
std::vector<std::complex<float>> buff(spb, std::complex<float>(ampl, ampl));
std::vector<std::complex<float>*> buffs(channel_nums.size(), &buff.front());
std::signal(SIGINT, &sig_int_handler);
if (repeat)
std::cout << "Press Ctrl + C to quit..." << std::endl;
double time_to_send = seconds_in_future;
do {
// setup metadata for the first packet
uhd::tx_metadata_t md;
md.start_of_burst = true;
md.end_of_burst = false;
md.has_time_spec = true;
md.time_spec = uhd::time_spec_t(time_to_send);
// the first call to send() will block this many seconds before sending:
double timeout = std::max(rep_rate, seconds_in_future)
+ 0.1; // timeout (delay before transmit + padding)
size_t num_acc_samps = 0; // number of accumulated samples
while (num_acc_samps < total_num_samps) {
size_t samps_to_send = total_num_samps - num_acc_samps;
if (samps_to_send > spb) {
samps_to_send = spb;
} else {
md.end_of_burst = true;
}
// send a single packet
size_t num_tx_samps = tx_stream->send(buffs, samps_to_send, md, timeout);
// do not use time spec for subsequent packets
md.has_time_spec = false;
md.start_of_burst = false;
if (num_tx_samps < samps_to_send) {
std::cerr << "Send timeout..." << std::endl;
if (stop_signal_called) {
exit(EXIT_FAILURE);
}
}
if (verbose) {
std::cout << boost::format("Sent packet: %u samples") % num_tx_samps
<< std::endl;
}
num_acc_samps += num_tx_samps;
}
time_to_send += rep_rate;
std::cout << std::endl << "Waiting for async burst ACK... " << std::flush;
uhd::async_metadata_t async_md;
size_t acks = 0;
// loop through all messages for the ACK packets (may have underflow messages in
// queue)
while (acks < channel_nums.size()
and tx_stream->recv_async_msg(async_md, seconds_in_future)) {
if (async_md.event_code == uhd::async_metadata_t::EVENT_CODE_BURST_ACK) {
acks++;
}
}
std::cout << (acks == channel_nums.size() ? "success" : "fail") << std::endl;
} while (not stop_signal_called and repeat);
// finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}
|