1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
//
// Copyright 2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <boost/thread/thread.hpp>
#include <boost/math/special_functions/round.hpp>
#include <iostream>
#include <complex>
#include <vector>
namespace po = boost::program_options;
/************************************************************************
* Misc functions
************************************************************************/
std::string return_MHz_string(double freq){
std::string nice_string = std::string(str(boost::format("%5.2f MHz") % (freq / 1e6)));
return nice_string;
}
std::string return_USRP_config_string(uhd::usrp::multi_usrp::sptr usrp, bool test_tx, bool test_rx){
uhd::dict<std::string, std::string> tx_info = usrp->get_usrp_tx_info();
uhd::dict<std::string, std::string> rx_info = usrp->get_usrp_rx_info();
std::string info_string;
std::string mboard_id, mboard_serial;
std::string tx_serial, tx_subdev_name, tx_subdev_spec;
std::string rx_serial, rx_subdev_name, rx_subdev_spec;
mboard_id = tx_info.get("mboard_id");
if(tx_info.get("mboard_serial") != "") mboard_serial = tx_info.get("mboard_serial");
else mboard_serial = "no serial";
info_string = std::string(str(boost::format("Motherboard: %s (%s)\n") % mboard_id % mboard_serial));
if(test_tx){
if(tx_info.get("tx_serial") != "") tx_serial = tx_info.get("tx_serial");
else tx_serial = "no serial";
tx_subdev_name = tx_info.get("tx_subdev_name");
tx_subdev_spec = tx_info.get("tx_subdev_spec");
info_string += std::string(str(boost::format("TX: %s (%s, %s)") % tx_subdev_name % tx_serial % tx_subdev_spec));
}
if(test_tx and test_rx) info_string += "\n";
if(test_rx){
if(rx_info.get("rx_serial") != "") rx_serial = rx_info.get("rx_serial");
else rx_serial = "no serial";
rx_subdev_name = rx_info.get("rx_subdev_name");
rx_subdev_spec = rx_info.get("rx_subdev_spec");
info_string += std::string(str(boost::format("RX: %s (%s, %s)") % rx_subdev_name % rx_serial % rx_subdev_spec));
}
return info_string;
}
/************************************************************************
* TX Frequency/Gain Coercion
************************************************************************/
std::string tx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbose){
//Establish frequency range
std::vector<double> freqs;
std::vector<double> xcvr_freqs;
BOOST_FOREACH(const uhd::range_t &range, usrp->get_fe_tx_freq_range()){
double freq_begin = range.start();
double freq_end = range.stop();
double freq_step;
if(usrp->get_usrp_tx_info().get("tx_subdev_name") == "XCVR2450 TX"){
xcvr_freqs.push_back(freq_begin);
xcvr_freqs.push_back(freq_end);
}
if(freq_end - freq_begin > 1000e6) freq_step = 100e6;
else if(freq_end - freq_begin < 300e6) freq_step = 10e6;
else freq_step = 50e6;
double current_freq = freq_begin;
while(current_freq < freq_end){
freqs.push_back(current_freq);
current_freq += freq_step;
}
if(freq_end != *freqs.end()) freqs.push_back(freq_end);
}
std::vector<double> gains;
if(test_gain){
//Establish gain range
double gain_begin = usrp->get_tx_gain_range().start();
if(gain_begin < 0.0) gain_begin = 0.0;
double gain_end = usrp->get_tx_gain_range().stop();
double current_gain = gain_begin;
while(current_gain < gain_end){
gains.push_back(current_gain);
current_gain++;
}
if(gain_end != *gains.end()) gains.push_back(gain_end);
}
//Establish error-storing variables
std::vector<double> bad_tune_freqs;
std::vector<double> no_lock_freqs;
std::vector< std::vector< double > > bad_gain_vals;
std::vector<std::string> dboard_sensor_names = usrp->get_tx_sensor_names();
std::vector<std::string> mboard_sensor_names = usrp->get_mboard_sensor_names();
bool has_sensor = (std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked")) != dboard_sensor_names.end();
for(std::vector<double>::iterator f = freqs.begin(); f != freqs.end(); ++f){
//Testing for successful frequency tune
usrp->set_tx_freq(*f);
boost::this_thread::sleep(boost::posix_time::microseconds(long(1000)));
double actual_freq = usrp->get_tx_freq();
if(*f == 0.0){
if(floor(actual_freq + 0.5) == 0.0){
if(verbose) std::cout << boost::format("\nTX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\nTX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl;
}
}
else{
if((*f / actual_freq > 0.9999) and (*f / actual_freq < 1.0001)){
if(verbose) std::cout << boost::format("\nTX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\nTX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl;
bad_tune_freqs.push_back(*f);
}
}
//Testing for successful lock
if(has_sensor){
bool is_locked = false;
for(int i = 0; i < 1000; i++){
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
if(usrp->get_tx_sensor("lo_locked",0).to_bool()){
is_locked = true;
break;
}
}
if(is_locked){
if(verbose) std::cout << boost::format("LO successfully locked at TX frequency %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("LO did not successfully lock at TX frequency %s.") % return_MHz_string(*f) << std::endl;
no_lock_freqs.push_back(*f);
}
}
if(test_gain){
//Testing for successful gain tune
for(std::vector<double>::iterator g = gains.begin(); g != gains.end(); ++g){
usrp->set_tx_gain(*g);
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
double actual_gain = usrp->get_tx_gain();
if(*g == 0.0){
if(actual_gain == 0.0){
if(verbose) std::cout << boost::format("TX gain successfully set to %5.2f at TX frequency %s.") % *g % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("TX gain set to %5.2f instead of %5.2f at TX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl;
std::vector<double> bad_gain_freq;
bad_gain_freq.push_back(*f);
bad_gain_freq.push_back(*g);
bad_gain_vals.push_back(bad_gain_freq);
}
}
else{
if((*g / actual_gain) > 0.9 and (*g / actual_gain) < 1.1){
if(verbose) std::cout << boost::format("TX gain successfully set to %5.2f at TX frequency %s.") % *g % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("TX gain set to %5.2f instead of %5.2f at TX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl;
std::vector<double> bad_gain_freq;
bad_gain_freq.push_back(*f);
bad_gain_freq.push_back(*g);
bad_gain_vals.push_back(bad_gain_freq);
}
}
}
}
}
std::string tx_results = "TX Summary:\n";
if(usrp->get_usrp_tx_info().get("tx_subdev_name") == "XCVR2450 TX"){
tx_results += std::string(str(boost::format("Frequency Range: %s - %s, %s - %s\n") % return_MHz_string(xcvr_freqs.at(0)) % return_MHz_string(xcvr_freqs.at(1)) %
return_MHz_string(xcvr_freqs.at(2)) % return_MHz_string(xcvr_freqs.at(3))));
}
else tx_results += std::string(str(boost::format("Frequency Range: %s - %s\n") % return_MHz_string(freqs.front()) % return_MHz_string(freqs.back())));
if(test_gain) tx_results += std::string(str(boost::format("Gain Range: %5.2f - %5.2f\n") % gains.front() % gains.back()));
if(bad_tune_freqs.empty()) tx_results += "USRP successfully tuned to all frequencies.";
else{
tx_results += "USRP did not successfully tune to the following frequencies: ";
for(std::vector<double>::iterator i = bad_tune_freqs.begin(); i != bad_tune_freqs.end(); ++i){
if(i != bad_tune_freqs.begin()) tx_results += ", ";
tx_results += return_MHz_string(*i);
}
}
if(has_sensor){
tx_results += "\n";
if(no_lock_freqs.empty()) tx_results += "LO successfully locked at all frequencies.";
else{
tx_results += "LO did not lock at the following frequencies: ";
for(std::vector<double>::iterator i = no_lock_freqs.begin(); i != no_lock_freqs.end(); ++i){
if(i != no_lock_freqs.begin()) tx_results += ", ";
tx_results += return_MHz_string(*i);
}
}
}
if(test_gain){
tx_results += "\n";
if(bad_gain_vals.empty()) tx_results += "USRP successfully set all specified gain values at all frequencies.";
else{
tx_results += "USRP did not successfully set gain under the following circumstances:";
for(std::vector< std::vector<double> >::iterator i = bad_gain_vals.begin(); i != bad_gain_vals.end(); ++i){
std::vector<double> bad_pair = *i;
double bad_freq = bad_pair.front();
double bad_gain = bad_pair.back();
tx_results += std::string(str(boost::format("\nFrequency: %s, Gain: %5.2f") % return_MHz_string(bad_freq) % bad_gain));
}
}
}
return tx_results;
}
/************************************************************************
* RX Frequency/Gain Coercion
************************************************************************/
std::string rx_test(uhd::usrp::multi_usrp::sptr usrp, bool test_gain, bool verbose){
//Establish frequency range
std::vector<double> freqs;
std::vector<double> xcvr_freqs;
BOOST_FOREACH(const uhd::range_t &range, usrp->get_fe_rx_freq_range()){
double freq_begin = range.start();
double freq_end = range.stop();
if(usrp->get_usrp_rx_info().get("rx_subdev_name") == "XCVR2450 RX"){
xcvr_freqs.push_back(freq_begin);
xcvr_freqs.push_back(freq_end);
}
double freq_step;
if(freq_end - freq_begin > 1000e6) freq_step = 100e6;
else if(freq_end - freq_begin < 300e6) freq_step = 10e6;
else freq_step = 50e6;
double current_freq = freq_begin;
while(current_freq < freq_end){
freqs.push_back(current_freq);
current_freq += freq_step;
}
}
std::vector<double> gains;
if(test_gain){
//Establish gain range
double gain_begin = usrp->get_rx_gain_range().start();
if(gain_begin < 0.0) gain_begin = 0.0;
double gain_end = usrp->get_rx_gain_range().stop();
double current_gain = gain_begin;
while(current_gain < gain_end){
gains.push_back(current_gain);
current_gain++;
}
if(gain_end != *gains.end()) gains.push_back(gain_end);
}
//Establish error-storing variables
std::vector<double> bad_tune_freqs;
std::vector<double> no_lock_freqs;
std::vector< std::vector< double > > bad_gain_vals;
std::vector<std::string> dboard_sensor_names = usrp->get_rx_sensor_names();
std::vector<std::string> mboard_sensor_names = usrp->get_mboard_sensor_names();
bool has_sensor = (std::find(dboard_sensor_names.begin(), dboard_sensor_names.end(), "lo_locked")) != dboard_sensor_names.end();
for(std::vector<double>::iterator f = freqs.begin(); f != freqs.end(); ++f){
//Testing for successful frequency tune
usrp->set_rx_freq(*f);
boost::this_thread::sleep(boost::posix_time::microseconds(long(1000)));
double actual_freq = usrp->get_rx_freq();
if(*f == 0.0){
if(floor(actual_freq + 0.5) == 0.0){
if(verbose) std::cout << boost::format("\nRX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\nRX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl;
}
}
else{
if((*f / actual_freq > 0.9999) and (*f / actual_freq < 1.0001)){
if(verbose) std::cout << boost::format("\nRX frequency successfully tuned to %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("\nRX frequency tuned to %s instead of %s.") % return_MHz_string(actual_freq) % return_MHz_string(*f) << std::endl;
bad_tune_freqs.push_back(*f);
}
}
//Testing for successful lock
if(has_sensor){
bool is_locked = false;
for(int i = 0; i < 1000; i++){
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
if(usrp->get_rx_sensor("lo_locked",0).to_bool()){
is_locked = true;
break;
}
}
if(is_locked){
if(verbose) std::cout << boost::format("LO successfully locked at RX frequency %s.") % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("LO did not successfully lock at RX frequency %s.") % return_MHz_string(*f) << std::endl;
no_lock_freqs.push_back(*f);
}
}
if(test_gain){
//Testing for successful gain tune
for(std::vector<double>::iterator g = gains.begin(); g != gains.end(); ++g){
usrp->set_rx_gain(*g);
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
double actual_gain = usrp->get_rx_gain();
if(*g == 0.0){
if(actual_gain == 0.0){
if(verbose) std::cout << boost::format("RX gain successfully set to %5.2f at RX frequency %s.") % *g % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("RX gain set to %5.2f instead of %5.2f at RX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl;
std::vector<double> bad_gain_freq;
bad_gain_freq.push_back(*f);
bad_gain_freq.push_back(*g);
bad_gain_vals.push_back(bad_gain_freq);
}
}
else{
if((*g / actual_gain) > 0.9 and (*g / actual_gain) < 1.1){
if(verbose) std::cout << boost::format("RX gain successfully set to %5.2f at RX frequency %s.") % *g % return_MHz_string(*f) << std::endl;
}
else{
if(verbose) std::cout << boost::format("RX gain set to %5.2f instead of %5.2f at RX frequency %s.") % actual_gain % *g % return_MHz_string(*f) << std::endl;
std::vector<double> bad_gain_freq;
bad_gain_freq.push_back(*f);
bad_gain_freq.push_back(*g);
bad_gain_vals.push_back(bad_gain_freq);
}
}
}
}
}
std::string rx_results = "RX Summary:\n";
if(usrp->get_usrp_rx_info().get("rx_subdev_name") == "XCVR2450 RX"){
rx_results += std::string(str(boost::format("Frequency Range: %s - %s, %s - %s\n") % return_MHz_string(xcvr_freqs.at(0)) % return_MHz_string(xcvr_freqs.at(1)) %
return_MHz_string(xcvr_freqs.at(2)) % return_MHz_string(xcvr_freqs.at(3))));
}
else rx_results += std::string(str(boost::format("Frequency Range: %s - %s\n") % return_MHz_string(freqs.front()) % return_MHz_string(freqs.back())));
if(test_gain) rx_results += std::string(str(boost::format("Gain Range: %5.2f - %5.2f\n") % gains.front() % gains.back()));
if(bad_tune_freqs.empty()) rx_results += "USRP successfully tuned to all frequencies.";
else{
rx_results += "USRP did not successfully tune to the following frequencies: ";
for(std::vector<double>::iterator i = bad_tune_freqs.begin(); i != bad_tune_freqs.end(); ++i){
if(i != bad_tune_freqs.begin()) rx_results += ", ";
rx_results += return_MHz_string(*i);
}
}
if(has_sensor){
rx_results += "\n";
if(no_lock_freqs.empty()) rx_results += "LO successfully locked at all frequencies.";
else{
rx_results += "LO did not successfully lock at the following frequencies: ";
for(std::vector<double>::iterator i = no_lock_freqs.begin(); i != no_lock_freqs.end(); ++i){
if( i != no_lock_freqs.begin()) rx_results += ", ";
rx_results += return_MHz_string(*i);
}
}
}
if(test_gain){
rx_results += "\n";
if(bad_gain_vals.empty()) rx_results += "USRP successfully set all specified gain values at all frequencies.";
else{
rx_results += "USRP did not successfully set gain under the following circumstances:";
for(std::vector< std::vector<double> >::iterator i = bad_gain_vals.begin(); i != bad_gain_vals.end(); ++i){
std::vector<double> bad_pair = *i;
double bad_freq = bad_pair.front();
double bad_gain = bad_pair.back();
rx_results += std::string(str(boost::format("\nFrequency: %s, Gain: %5.2f") % return_MHz_string(bad_freq) % bad_gain));
}
}
}
return rx_results;
}
/************************************************************************
* Initial Setup
************************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
//Variables
std::string args;
double gain_step;
std::string ref;
std::string tx_results;
std::string rx_results;
std::string usrp_config;
//Set up the program options
po::options_description desc("Allowed Options");
desc.add_options()
("help", "help message")
("args", po::value<std::string>(&args)->default_value(""), "Specify the UHD device")
("gain_step", po::value<double>(&gain_step)->default_value(1.0), "Specify the delta between gain scans")
("tx", "Specify to test TX frequency and gain coercion")
("rx", "Specify to test RX frequency and gain coercion")
("ref", po::value<std::string>(&ref)->default_value("internal"), "Waveform type: internal, external, or mimo")
("no_tx_gain", "Do not test TX gain")
("no_rx_gain", "Do not test RX gain")
("verbose", "Output every frequency and gain check instead of just final summary")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//Create a USRP device
std::cout << std::endl;
uhd::device_addrs_t device_addrs = uhd::device::find(args);
std::cout << boost::format("Creating the USRP device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
std::cout << std::endl << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;
usrp->set_tx_rate(1e6);
usrp->set_rx_rate(1e6);
//Boolean variables based on command line input
bool test_tx = vm.count("tx") > 0;
bool test_rx = vm.count("rx") > 0;
bool test_tx_gain = !(vm.count("no_tx_gain") > 0) and (usrp->get_tx_gain_range().stop() > 0);
bool test_rx_gain = !(vm.count("no_rx_gain") > 0) and (usrp->get_rx_gain_range().stop() > 0);
bool verbose = vm.count("verbose") > 0;
//Help messages, errors
if(vm.count("help") > 0){
std::cout << "UHD Daughterboard Coercion Test\n"
"This program tests your USRP daughterboard(s) to\n"
"make sure that they can successfully tune to all\n"
"frequencies and gains in their advertised ranges.\n\n";
std::cout << desc << std::endl;
return ~0;
}
if(ref != "internal" and ref != "external" and ref != "mimo"){
std::cout << desc << std::endl;
std::cout << "REF must equal internal, external, or mimo." << std::endl;
return ~0;
}
if(vm.count("tx") + vm.count("rx") == 0){
std::cout << desc << std::endl;
std::cout << "Specify --tx to test for TX frequency coercion\n"
"Specify --rx to test for RX frequency coercion\n";
return ~0;
}
if(test_rx and usrp->get_usrp_rx_info().get("rx_id") == "Basic RX (0x0001)"){
std::cout << desc << std::endl;
std::cout << "This test does not work with the Basic RX daughterboard." << std::endl;
return ~0;
}
else if(test_rx and usrp->get_usrp_rx_info().get("rx_id") == "Unknown (0xffff)"){
std::cout << desc << std::endl;
std::cout << "This daughterboard is unrecognized, or there is no RX daughterboard." << std::endl;
return ~0;
}
if(test_tx and usrp->get_usrp_tx_info().get("tx_id") == "Basic TX (0x0000)"){
std::cout << desc << std::endl;
std::cout << "This test does not work with the Basic TX daughterboard." << std::endl;
return ~0;
}
else if(test_tx and usrp->get_usrp_tx_info().get("tx_id") == "Unknown (0xffff)"){
std::cout << desc << std::endl;
std::cout << "This daughterboard is unrecognized, or there is no TX daughterboard." << std::endl;
return ~0;
}
//Setting clock source
usrp->set_clock_source(ref);
boost::this_thread::sleep(boost::posix_time::seconds(1));
std::vector<std::string> sensor_names = usrp->get_mboard_sensor_names(0);
if ((ref == "mimo") and (std::find(sensor_names.begin(), sensor_names.end(), "mimo_locked") != sensor_names.end())) {
uhd::sensor_value_t mimo_locked = usrp->get_mboard_sensor("mimo_locked",0);
std::cout << boost::format("Checking MIMO lock: %s ...") % mimo_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(mimo_locked.to_bool());
}
if ((ref == "external") and (std::find(sensor_names.begin(), sensor_names.end(), "ref_locked") != sensor_names.end())) {
uhd::sensor_value_t ref_locked = usrp->get_mboard_sensor("ref_locked",0);
std::cout << boost::format("Checking REF lock: %s ...") % ref_locked.to_pp_string() << std::endl;
UHD_ASSERT_THROW(ref_locked.to_bool());
}
usrp_config = return_USRP_config_string(usrp, test_tx, test_rx);
if(test_tx) tx_results = tx_test(usrp, test_tx_gain, verbose);
if(test_rx) rx_results = rx_test(usrp, test_rx_gain, verbose);
if(verbose) std::cout << std::endl;
std::cout << usrp_config << std::endl << std::endl;
if(test_tx) std::cout << tx_results << std::endl;
if(test_tx and test_rx) std::cout << std::endl;
if(test_rx) std::cout << rx_results << std::endl;
return EXIT_SUCCESS;
}
|