1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
//
// Copyright 2014-2016 Ettus Research LLC
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/exception.hpp>
#include <uhd/rfnoc/ddc_block_control.hpp>
#include <uhd/rfnoc/defaults.hpp>
#include <uhd/rfnoc/mb_controller.hpp>
#include <uhd/rfnoc/radio_control.hpp>
#include <uhd/rfnoc_graph.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/types/tune_request.hpp>
#include <uhd/utils/graph_utils.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/thread.hpp>
#include <boost/program_options.hpp>
#include <chrono>
#include <complex>
#include <csignal>
#include <fstream>
#include <functional>
#include <iostream>
#include <thread>
namespace po = boost::program_options;
constexpr int64_t UPDATE_INTERVAL = 1; // 1 second update interval for BW summary
static bool stop_signal_called = false;
void sig_int_handler(int)
{
stop_signal_called = true;
}
template <typename samp_type>
void recv_to_file(uhd::rx_streamer::sptr rx_stream,
const std::string& file,
const size_t samps_per_buff,
const double rx_rate,
const unsigned long long num_requested_samples,
double time_requested = 0.0,
bool bw_summary = false,
bool stats = false,
bool enable_size_map = false,
bool continue_on_bad_packet = false)
{
unsigned long long num_total_samps = 0;
uhd::rx_metadata_t md;
std::vector<samp_type> buff(samps_per_buff);
std::ofstream outfile;
if (not file.empty()) {
outfile.open(file.c_str(), std::ofstream::binary);
}
bool overflow_message = true;
// setup streaming
uhd::stream_cmd_t stream_cmd((num_requested_samples == 0)
? uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS
: uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = size_t(num_requested_samples);
stream_cmd.stream_now = true;
stream_cmd.time_spec = uhd::time_spec_t();
std::cout << "Issuing stream cmd" << std::endl;
rx_stream->issue_stream_cmd(stream_cmd);
const auto start_time = std::chrono::steady_clock::now();
const auto stop_time =
start_time + std::chrono::milliseconds(int64_t(1000 * time_requested));
// Track time and samps between updating the BW summary
auto last_update = start_time;
unsigned long long last_update_samps = 0;
typedef std::map<size_t, size_t> SizeMap;
SizeMap mapSizes;
// Run this loop until either time expired (if a duration was given), until
// the requested number of samples were collected (if such a number was
// given), or until Ctrl-C was pressed.
while (not stop_signal_called
and (num_requested_samples != num_total_samps or num_requested_samples == 0)
and (time_requested == 0.0 or std::chrono::steady_clock::now() <= stop_time)) {
const auto now = std::chrono::steady_clock::now();
size_t num_rx_samps =
rx_stream->recv(&buff.front(), buff.size(), md, 3.0, enable_size_map);
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
std::cout << "Timeout while streaming" << std::endl;
break;
}
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) {
if (overflow_message) {
overflow_message = false;
std::cerr
<< "Got an overflow indication. Please consider the following:\n"
" Your write medium must sustain a rate of "
<< (rx_rate * sizeof(samp_type) / 1e6)
<< "MB/s.\n"
" Dropped samples will not be written to the file.\n"
" Please modify this example for your purposes.\n"
" This message will not appear again.\n";
}
continue;
}
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
std::string error = std::string("Receiver error: ") + md.strerror();
if (continue_on_bad_packet) {
std::cerr << error << std::endl;
continue;
} else
throw std::runtime_error(error);
}
if (enable_size_map) {
SizeMap::iterator it = mapSizes.find(num_rx_samps);
if (it == mapSizes.end())
mapSizes[num_rx_samps] = 0;
mapSizes[num_rx_samps] += 1;
}
num_total_samps += num_rx_samps;
if (outfile.is_open()) {
outfile.write((const char*)&buff.front(), num_rx_samps * sizeof(samp_type));
}
if (bw_summary) {
last_update_samps += num_rx_samps;
const auto time_since_last_update = now - last_update;
if (time_since_last_update > std::chrono::seconds(UPDATE_INTERVAL)) {
const double time_since_last_update_s =
std::chrono::duration<double>(time_since_last_update).count();
const double rate = double(last_update_samps) / time_since_last_update_s;
std::cout << "\t" << (rate / 1e6) << " MSps" << std::endl;
last_update_samps = 0;
last_update = now;
}
}
}
const auto actual_stop_time = std::chrono::steady_clock::now();
stream_cmd.stream_mode = uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS;
std::cout << "Issuing stop stream cmd" << std::endl;
rx_stream->issue_stream_cmd(stream_cmd);
// Run recv until nothing is left
int num_post_samps = 0;
do {
num_post_samps = rx_stream->recv(&buff.front(), buff.size(), md, 3.0);
} while (num_post_samps and md.error_code == uhd::rx_metadata_t::ERROR_CODE_NONE);
if (outfile.is_open())
outfile.close();
if (stats) {
std::cout << std::endl;
const double actual_duration_seconds =
std::chrono::duration<float>(actual_stop_time - start_time).count();
std::cout << "Received " << num_total_samps << " samples in "
<< actual_duration_seconds << " seconds" << std::endl;
const double rate = (double)num_total_samps / actual_duration_seconds;
std::cout << (rate / 1e6) << " MSps" << std::endl;
if (enable_size_map) {
std::cout << std::endl;
std::cout << "Packet size map (bytes: count)" << std::endl;
for (SizeMap::iterator it = mapSizes.begin(); it != mapSizes.end(); it++)
std::cout << it->first << ":\t" << it->second << std::endl;
}
}
}
typedef std::function<uhd::sensor_value_t(const std::string&)> get_sensor_fn_t;
bool check_locked_sensor(std::vector<std::string> sensor_names,
const char* sensor_name,
get_sensor_fn_t get_sensor_fn,
double setup_time)
{
if (std::find(sensor_names.begin(), sensor_names.end(), sensor_name)
== sensor_names.end())
return false;
auto setup_timeout = std::chrono::steady_clock::now()
+ std::chrono::milliseconds(int64_t(setup_time * 1000));
bool lock_detected = false;
std::cout << "Waiting for \"" << sensor_name << "\": ";
std::cout.flush();
while (true) {
if (lock_detected and (std::chrono::steady_clock::now() > setup_timeout)) {
std::cout << " locked." << std::endl;
break;
}
if (get_sensor_fn(sensor_name).to_bool()) {
std::cout << "+";
std::cout.flush();
lock_detected = true;
} else {
if (std::chrono::steady_clock::now() > setup_timeout) {
std::cout << std::endl;
throw std::runtime_error(
std::string("timed out waiting for consecutive locks on sensor \"")
+ sensor_name + "\"");
}
std::cout << "_";
std::cout.flush();
}
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
std::cout << std::endl;
return true;
}
int UHD_SAFE_MAIN(int argc, char* argv[])
{
// variables to be set by po
std::string args, file, format, ant, subdev, ref, wirefmt, streamargs, block_id,
block_props;
size_t total_num_samps, spb, spp, radio_id, radio_chan, block_port;
double rate, freq, gain, bw, total_time, setup_time;
// setup the program options
po::options_description desc("Allowed options");
// clang-format off
desc.add_options()
("help", "help message")
("file", po::value<std::string>(&file)->default_value("usrp_samples.dat"), "name of the file to write binary samples to")
("format", po::value<std::string>(&format)->default_value("sc16"), "File sample format: sc16, fc32, or fc64")
("duration", po::value<double>(&total_time)->default_value(0), "total number of seconds to receive")
("nsamps", po::value<size_t>(&total_num_samps)->default_value(0), "total number of samples to receive")
("spb", po::value<size_t>(&spb)->default_value(10000), "samples per buffer")
("spp", po::value<size_t>(&spp), "samples per packet (on FPGA and wire)")
("streamargs", po::value<std::string>(&streamargs)->default_value(""), "stream args")
("progress", "periodically display short-term bandwidth")
("stats", "show average bandwidth on exit")
("sizemap", "track packet size and display breakdown on exit")
("null", "run without writing to file")
("continue", "don't abort on a bad packet")
("args", po::value<std::string>(&args)->default_value(""), "USRP device address args")
("setup", po::value<double>(&setup_time)->default_value(1.0), "seconds of setup time")
("radio-id", po::value<size_t>(&radio_id)->default_value(0), "Radio ID to use (0 or 1).")
("radio-chan", po::value<size_t>(&radio_chan)->default_value(0), "Radio channel")
("rate", po::value<double>(&rate)->default_value(1e6), "RX rate of the radio block")
("freq", po::value<double>(&freq)->default_value(0.0), "RF center frequency in Hz")
("gain", po::value<double>(&gain), "gain for the RF chain")
("ant", po::value<std::string>(&ant), "antenna selection")
("bw", po::value<double>(&bw), "analog frontend filter bandwidth in Hz")
("ref", po::value<std::string>(&ref), "reference source (internal, external, mimo)")
("skip-lo", "skip checking LO lock status")
("int-n", "tune USRP with integer-N tuning")
("block-id", po::value<std::string>(&block_id), "If block ID is specified, this block is inserted between radio and host.")
("block-port", po::value<size_t>(&block_port)->default_value(0), "If block ID is specified, this block is inserted between radio and host.")
("block-props", po::value<std::string>(&block_props), "These are passed straight to the block as properties (see set_properties()).")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// print the help message
if (vm.count("help")) {
std::cout << "UHD/RFNoC RX samples to file " << desc << std::endl;
std::cout << std::endl
<< "This application streams data from a single channel of a USRP "
"device to a file.\n"
<< std::endl;
return ~0;
}
bool bw_summary = vm.count("progress") > 0;
bool stats = vm.count("stats") > 0;
if (vm.count("null") > 0) {
file = "";
}
bool enable_size_map = vm.count("sizemap") > 0;
bool continue_on_bad_packet = vm.count("continue") > 0;
if (enable_size_map) {
std::cout << "Packet size tracking enabled - will only recv one packet at a time!"
<< std::endl;
}
if (format != "sc16" and format != "fc32" and format != "fc64") {
std::cout << "Invalid sample format: " << format << std::endl;
return EXIT_FAILURE;
}
/************************************************************************
* Create device and block controls
***********************************************************************/
std::cout << std::endl;
std::cout << "Creating the RFNoC graph with args: " << args << std::endl;
auto graph = uhd::rfnoc::rfnoc_graph::make(args);
// Create handle for radio object
uhd::rfnoc::block_id_t radio_ctrl_id(0, "Radio", radio_id);
// This next line will fail if the radio is not actually available
auto radio_ctrl = graph->get_block<uhd::rfnoc::radio_control>(radio_ctrl_id);
std::cout << "Using radio " << radio_id << ", channel " << radio_chan << std::endl;
uhd::rfnoc::block_id_t last_block_in_chain;
size_t last_port_in_chain;
uhd::rfnoc::ddc_block_control::sptr ddc_ctrl;
size_t ddc_chan = 0;
bool user_block_found = false;
{ // First, connect everything dangling off of the radio
auto edges = uhd::rfnoc::get_block_chain(graph, radio_ctrl_id, radio_chan, true);
last_block_in_chain = edges.back().src_blockid;
last_port_in_chain = edges.back().src_port;
if (edges.size() > 1) {
uhd::rfnoc::connect_through_blocks(graph,
radio_ctrl_id,
radio_chan,
last_block_in_chain,
last_port_in_chain);
for (auto& edge : edges) {
if (uhd::rfnoc::block_id_t(edge.dst_blockid).get_block_name() == "DDC") {
ddc_ctrl =
graph->get_block<uhd::rfnoc::ddc_block_control>(edge.dst_blockid);
ddc_chan = edge.dst_port;
}
if (vm.count("block-id") && edge.dst_blockid == block_id) {
user_block_found = true;
}
}
}
}
// If the user block is not in the chain yet, see if we can connect that
// separately
if (vm.count("block-id") && !user_block_found) {
const auto user_block_id = uhd::rfnoc::block_id_t(block_id);
if (!graph->has_block(user_block_id)) {
std::cout << "ERROR! No such block: " << block_id << std::endl;
return EXIT_FAILURE;
}
std::cout << "Attempting to connect " << block_id << ":" << last_port_in_chain
<< " to " << last_block_in_chain << ":" << block_port << "..."
<< std::endl;
uhd::rfnoc::connect_through_blocks(
graph, last_block_in_chain, last_port_in_chain, user_block_id, block_port);
last_block_in_chain = uhd::rfnoc::block_id_t(block_id);
last_port_in_chain = block_port;
// Now we have to make sure that there are no more static connections
// after the user-defined block
auto edges = uhd::rfnoc::get_block_chain(
graph, last_block_in_chain, last_port_in_chain, true);
if (edges.size() > 1) {
uhd::rfnoc::connect_through_blocks(graph,
last_block_in_chain,
last_port_in_chain,
edges.back().src_blockid,
edges.back().src_port);
last_block_in_chain = edges.back().src_blockid;
last_port_in_chain = edges.back().src_port;
}
}
/************************************************************************
* Set up radio
***********************************************************************/
// Lock mboard clocks
if (vm.count("ref")) {
graph->get_mb_controller(0)->set_clock_source(ref);
}
// set the center frequency
if (vm.count("freq")) {
std::cout << "Requesting RX Freq: " << (freq / 1e6) << " MHz..." << std::endl;
uhd::tune_request_t tune_request(freq);
if (vm.count("int-n")) {
radio_ctrl->set_rx_tune_args(
uhd::device_addr_t("mode_n=integer"), radio_chan);
}
radio_ctrl->set_rx_frequency(freq, radio_chan);
std::cout << "Actual RX Freq: "
<< (radio_ctrl->get_rx_frequency(radio_chan) / 1e6) << " MHz..."
<< std::endl
<< std::endl;
}
// set the rf gain
if (vm.count("gain")) {
std::cout << "Requesting RX Gain: " << gain << " dB..." << std::endl;
radio_ctrl->set_rx_gain(gain, radio_chan);
std::cout << "Actual RX Gain: " << radio_ctrl->get_rx_gain(radio_chan) << " dB..."
<< std::endl
<< std::endl;
}
// set the IF filter bandwidth
if (vm.count("bw")) {
std::cout << "Requesting RX Bandwidth: " << (bw / 1e6) << " MHz..." << std::endl;
radio_ctrl->set_rx_bandwidth(bw, radio_chan);
std::cout << "Actual RX Bandwidth: "
<< (radio_ctrl->get_rx_bandwidth(radio_chan) / 1e6) << " MHz..."
<< std::endl
<< std::endl;
}
// set the antenna
if (vm.count("ant")) {
radio_ctrl->set_rx_antenna(ant, radio_chan);
}
std::this_thread::sleep_for(std::chrono::milliseconds(int64_t(1000 * setup_time)));
// check Ref and LO Lock detect
if (not vm.count("skip-lo")) {
check_locked_sensor(
radio_ctrl->get_rx_sensor_names(radio_chan),
"lo_locked",
[&](const std::string& sensor_name) {
return radio_ctrl->get_rx_sensor(sensor_name, radio_chan);
},
setup_time);
if (ref == "external") {
check_locked_sensor(
graph->get_mb_controller(0)->get_sensor_names(),
"ref_locked",
[&](const std::string& sensor_name) {
return graph->get_mb_controller(0)->get_sensor(sensor_name);
},
setup_time);
}
}
if (vm.count("spp")) {
std::cout << "Requesting samples per packet of: " << spp << std::endl;
radio_ctrl->set_property<int>("spp", spp, radio_chan);
spp = radio_ctrl->get_property<int>("spp", radio_chan);
std::cout << "Actual samples per packet = " << spp << std::endl;
}
/************************************************************************
* Set up streaming
***********************************************************************/
uhd::device_addr_t streamer_args(streamargs);
// create a receive streamer
uhd::stream_args_t stream_args(
format, "sc16"); // We should read the wire format from the blocks
stream_args.args = streamer_args;
std::cout << "Using streamer args: " << stream_args.args.to_string() << std::endl;
auto rx_stream = graph->create_rx_streamer(1, stream_args);
// Connect streamer to last block and commit the graph
graph->connect(last_block_in_chain, last_port_in_chain, rx_stream, 0);
graph->commit();
std::cout << "Active connections:" << std::endl;
for (auto& edge : graph->enumerate_active_connections()) {
std::cout << "* " << edge.to_string() << std::endl;
}
/************************************************************************
* Set up sampling rate and (optional) user block properties. We do this
* after commit() so we can use the property propagation.
***********************************************************************/
// set the sample rate
if (rate <= 0.0) {
std::cerr << "Please specify a valid sample rate" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Requesting RX Rate: " << (rate / 1e6) << " Msps..." << std::endl;
if (ddc_ctrl) {
std::cout << "Setting rate on DDC block!" << std::endl;
rate = ddc_ctrl->set_output_rate(rate, ddc_chan);
} else {
std::cout << "Setting rate on radio block!" << std::endl;
rate = radio_ctrl->set_rate(rate);
}
std::cout << "Actual RX Rate: " << (rate / 1e6) << " Msps..." << std::endl
<< std::endl;
if (vm.count("block-props")) {
std::cout << "Setting block properties to: " << block_props << std::endl;
graph->get_block(uhd::rfnoc::block_id_t(block_id))
->set_properties(uhd::device_addr_t(block_props));
}
if (total_num_samps == 0) {
std::signal(SIGINT, &sig_int_handler);
std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
}
#define recv_to_file_args() \
(rx_stream, \
file, \
spb, \
rate, \
total_num_samps, \
total_time, \
bw_summary, \
stats, \
enable_size_map, \
continue_on_bad_packet)
// recv to file
if (format == "fc64")
recv_to_file<std::complex<double>> recv_to_file_args();
else if (format == "fc32")
recv_to_file<std::complex<float>> recv_to_file_args();
else if (format == "sc16")
recv_to_file<std::complex<short>> recv_to_file_args();
else
throw std::runtime_error("Unknown data format: " + format);
// finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}
|