aboutsummaryrefslogtreecommitdiffstats
path: root/host/examples/rfnoc_replay_samples_from_file.cpp
blob: 2c1e5cb717153ec41e3c30b40a9547c9bb2704a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//
// Copyright 2020 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
//
// Description:
//
// This example demonstrates using the Replay block to replay data from a file.
// It streams the file data to the Replay block, where it is recorded, then it
// is played back to the radio.

#include <uhd/rfnoc/block_id.hpp>
#include <uhd/rfnoc/duc_block_control.hpp>
#include <uhd/rfnoc/mb_controller.hpp>
#include <uhd/rfnoc/radio_control.hpp>
#include <uhd/rfnoc/replay_block_control.hpp>
#include <uhd/rfnoc_graph.hpp>
#include <uhd/types/tune_request.hpp>
#include <uhd/utils/graph_utils.hpp>
#include <uhd/utils/math.hpp>
#include <uhd/utils/safe_main.hpp>
#include <boost/program_options.hpp>
#include <chrono>
#include <csignal>
#include <fstream>
#include <iostream>
#include <thread>

namespace po = boost::program_options;

using std::cout;
using std::endl;
using namespace std::chrono_literals;

///////////////////////////////////////////////////////////////////////////////

static volatile bool stop_signal_called = false;

// Ctrl+C handler
void sig_int_handler(int)
{
    stop_signal_called = true;
}


int UHD_SAFE_MAIN(int argc, char* argv[])
{
    // We use sc16 in this example, but the replay block only uses 64-bit words
    // and is not aware of the CPU or wire format.
    std::string wire_format("sc16");
    std::string cpu_format("sc16");

    /************************************************************************
     * Set up the program options
     ***********************************************************************/
    std::string args, tx_args, file, ant, ref;
    double rate, freq, gain, bw;
    size_t radio_id, radio_chan, replay_id, replay_chan, nsamps;

    po::options_description desc("Allowed Options");
    // clang-format off
    desc.add_options()
        ("help", "help message")
        ("args", po::value<std::string>(&args)->default_value(""), "multi uhd device address args")
        ("tx_args", po::value<std::string>(&tx_args), "Block args for the transmit radio")
        ("radio_id", po::value<size_t>(&radio_id)->default_value(0), "radio block to use (e.g., 0 or 1).")
        ("radio_chan", po::value<size_t>(&radio_chan)->default_value(0), "radio channel to use")
        ("replay_id", po::value<size_t>(&replay_id)->default_value(0), "replay block to use (e.g., 0 or 1)")
        ("replay_chan", po::value<size_t>(&replay_chan)->default_value(0), "replay channel to use")
        ("nsamps", po::value<size_t>(&nsamps)->default_value(0), "number of samples to play (0 for infinite)")
        ("file", po::value<std::string>(&file)->default_value("usrp_samples.dat"), "name of the file to read binary samples from")
        ("freq", po::value<double>(&freq), "RF center frequency in Hz")
        ("rate", po::value<double>(&rate), "rate of radio block")
        ("gain", po::value<double>(&gain), "gain for the RF chain")
        ("ant", po::value<std::string>(&ant), "antenna selection")
        ("bw", po::value<double>(&bw), "analog front-end filter bandwidth in Hz")
        ("ref", po::value<std::string>(&ref)->default_value("internal"), "reference source (internal, external, mimo)")
    ;
    // clang-format on
    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, desc), vm);
    po::notify(vm);

    // Print help message
    if (vm.count("help")) {
        cout << "UHD/RFNoC Replay samples from file " << desc << endl;
        cout << "This application uses the Replay block to playback data from a file to "
                "a radio"
             << endl
             << endl;
        return EXIT_FAILURE;
    }


    /************************************************************************
     * Create device and block controls
     ***********************************************************************/
    std::cout << std::endl;
    std::cout << "Creating the RFNoC graph with args: " << args << "..." << std::endl;
    auto graph = uhd::rfnoc::rfnoc_graph::make(args);

    // Create handle for radio object
    uhd::rfnoc::block_id_t radio_ctrl_id(0, "Radio", radio_id);
    auto radio_ctrl = graph->get_block<uhd::rfnoc::radio_control>(radio_ctrl_id);

    // Check if the replay block exists on this device
    uhd::rfnoc::block_id_t replay_ctrl_id(0, "Replay", replay_id);
    if (!graph->has_block(replay_ctrl_id)) {
        cout << "Unable to find block \"" << replay_ctrl_id << "\"" << endl;
        return EXIT_FAILURE;
    }
    auto replay_ctrl = graph->get_block<uhd::rfnoc::replay_block_control>(replay_ctrl_id);

    // Connect replay to radio
    auto edges = uhd::rfnoc::connect_through_blocks(
        graph, replay_ctrl_id, replay_chan, radio_ctrl_id, radio_chan);

    // Check for a DUC connected to the radio
    uhd::rfnoc::duc_block_control::sptr duc_ctrl;
    size_t duc_chan = 0;
    for (auto& edge : edges) {
        auto blockid = uhd::rfnoc::block_id_t(edge.dst_blockid);
        if (blockid.match("DUC")) {
            duc_ctrl = graph->get_block<uhd::rfnoc::duc_block_control>(blockid);
            duc_chan = edge.dst_port;
            break;
        }
    }

    // Report blocks
    std::cout << "Using Radio Block:  " << radio_ctrl_id << ", channel " << radio_chan
              << std::endl;
    std::cout << "Using Replay Block: " << replay_ctrl_id << ", channel " << replay_chan
              << std::endl;
    if (duc_ctrl) {
        std::cout << "Using DUC Block:    " << duc_ctrl->get_block_id() << ", channel "
                  << duc_chan << std::endl;
    }


    /************************************************************************
     * Set up streamer to Replay block and commit graph
     ***********************************************************************/
    uhd::device_addr_t streamer_args;
    uhd::stream_args_t stream_args(cpu_format, wire_format);
    uhd::tx_streamer::sptr tx_stream;
    uhd::tx_metadata_t tx_md;

    stream_args.args            = streamer_args;
    tx_stream = graph->create_tx_streamer(stream_args.channels.size(), stream_args);
    graph->connect(tx_stream, 0, replay_ctrl->get_block_id(), replay_chan);
    graph->commit();

    /************************************************************************
     * Set up radio
     ***********************************************************************/
    // Set clock reference
    if (vm.count("ref")) {
        // Lock mboard clocks
        for (size_t i = 0; i < graph->get_num_mboards(); ++i) {
            graph->get_mb_controller(i)->set_clock_source(ref);
        }
    }

    // Apply any radio arguments provided
    if (vm.count("tx_args")) {
        radio_ctrl->set_tx_tune_args(tx_args, radio_chan);
    }

    // Set the center frequency
    if (!vm.count("freq")) {
        std::cerr << "Please specify the center frequency with --freq" << std::endl;
        return EXIT_FAILURE;
    }
    std::cout << std::fixed;
    std::cout << "Requesting TX Freq: " << (freq / 1e6) << " MHz..." << std::endl;
    radio_ctrl->set_tx_frequency(freq, radio_chan);
    std::cout << "Actual TX Freq: " << (radio_ctrl->get_tx_frequency(radio_chan) / 1e6)
              << " MHz..." << std::endl
              << std::endl;
    std::cout << std::resetiosflags(std::ios::fixed);

    // Set the sample rate
    if (vm.count("rate")) {
        std::cout << std::fixed;
        std::cout << "Requesting TX Rate: " << (rate / 1e6) << " Msps..." << std::endl;
        if (duc_ctrl) {
            std::cout << "DUC block found." << std::endl;
            duc_ctrl->set_input_rate(rate, duc_chan);
            std::cout << "  Interpolation value is "
                      << duc_ctrl->get_property<int>("interp", duc_chan) << std::endl;
            rate = duc_ctrl->get_input_rate(duc_chan);
        } else {
            rate = radio_ctrl->set_rate(rate);
        }
        std::cout << "Actual TX Rate: " << (rate / 1e6) << " Msps..." << std::endl
                  << std::endl;
        std::cout << std::resetiosflags(std::ios::fixed);
    }

    // Set the RF gain
    if (vm.count("gain")) {
        std::cout << std::fixed;
        std::cout << "Requesting TX Gain: " << gain << " dB..." << std::endl;
        radio_ctrl->set_tx_gain(gain, radio_chan);
        std::cout << "Actual TX Gain: " << radio_ctrl->get_tx_gain(radio_chan) << " dB..."
                  << std::endl
                  << std::endl;
        std::cout << std::resetiosflags(std::ios::fixed);
    }

    // Set the analog front-end filter bandwidth
    if (vm.count("bw")) {
        std::cout << std::fixed;
        std::cout << "Requesting TX Bandwidth: " << (bw / 1e6) << " MHz..." << std::endl;
        radio_ctrl->set_tx_bandwidth(bw, radio_chan);
        std::cout << "Actual TX Bandwidth: "
                  << (radio_ctrl->get_tx_bandwidth(radio_chan) / 1e6) << " MHz..."
                  << std::endl
                  << std::endl;
        std::cout << std::resetiosflags(std::ios::fixed);
    }

    // Set the antenna
    if (vm.count("ant")) {
        radio_ctrl->set_tx_antenna(ant, radio_chan);
    }

    // Allow for some setup time
    std::this_thread::sleep_for(std::chrono::milliseconds(200));



    /************************************************************************
     * Read the data to replay
     ***********************************************************************/
    // Constants related to the Replay block
    const size_t replay_word_size =
        replay_ctrl->get_word_size(); // Size of words used by replay block
    const size_t sample_size = 4; // Complex signed 16-bit is 32 bits per sample


    // Open the file
    std::ifstream infile(file.c_str(), std::ifstream::binary);
    if (!infile.is_open()) {
        std::cerr << "Could not open specified file" << std::endl;
        return EXIT_FAILURE;
    }

    // Get the file size
    infile.seekg(0, std::ios::end);
    size_t file_size = infile.tellg();
    infile.seekg(0, std::ios::beg);

    // Calculate the number of 64-bit words and samples to replay
    size_t words_to_replay   = file_size / replay_word_size;
    size_t samples_to_replay = file_size / sample_size;

    // Create buffer
    std::vector<char> tx_buffer(samples_to_replay * sample_size);
    char* tx_buf_ptr = &tx_buffer[0];

    // Read file into buffer, rounded down to number of words
    infile.read(tx_buf_ptr, samples_to_replay * sample_size);
    infile.close();


    /************************************************************************
     * Configure replay block
     ***********************************************************************/
    // Configure a buffer in the on-board memory at address 0 that's equal in
    // size to the file we want to play back (rounded down to a multiple of
    // 64-bit words). Note that it is allowed to playback a different size or
    // location from what was recorded.
    uint32_t replay_buff_addr = 0;
    uint32_t replay_buff_size = samples_to_replay * sample_size;
    replay_ctrl->record(replay_buff_addr, replay_buff_size, replay_chan);

    // Display replay configuration
    cout << "Replay file size:     " << replay_buff_size << " bytes (" << words_to_replay
         << " qwords, " << samples_to_replay << " samples)" << endl;

    cout << "Record base address:  0x" << std::hex
         << replay_ctrl->get_record_offset(replay_chan) << std::dec << endl;
    cout << "Record buffer size:   " << replay_ctrl->get_record_size(replay_chan)
         << " bytes" << endl;
    cout << "Record fullness:      " << replay_ctrl->get_record_fullness(replay_chan)
         << " bytes" << endl
         << endl;

    // Restart record buffer repeatedly until no new data appears on the Replay
    // block's input. This will flush any data that was buffered on the input.
    uint32_t fullness;
    cout << "Emptying record buffer..." << endl;
    do {
        replay_ctrl->record_restart(replay_chan);

        // Make sure the record buffer doesn't start to fill again
        auto start_time = std::chrono::steady_clock::now();
        do {
            fullness = replay_ctrl->get_record_fullness(replay_chan);
            if (fullness != 0)
                break;
        } while (start_time + 250ms > std::chrono::steady_clock::now());
    } while (fullness);
    cout << "Record fullness:      " << replay_ctrl->get_record_fullness(replay_chan)
         << " bytes" << endl
         << endl;

    /************************************************************************
     * Send data to replay (== record the data)
     ***********************************************************************/
    cout << "Sending data to be recorded..." << endl;
    tx_md.start_of_burst = true;
    tx_md.end_of_burst   = true;
    // We use a very big timeout here, any network buffering issue etc. is not
    // a problem for this application, and we want to upload all the data in one
    // send() call.
    size_t num_tx_samps = tx_stream->send(tx_buf_ptr, samples_to_replay, tx_md, 5.0);
    if (num_tx_samps != samples_to_replay) {
        cout << "ERROR: Unable to send " << samples_to_replay << " samples (sent "
             << num_tx_samps << ")" << endl;
        return EXIT_FAILURE;
    }

    /************************************************************************
     * Wait for data to be stored in on-board memory
     ***********************************************************************/
    cout << "Waiting for recording to complete..." << endl;
    while (replay_ctrl->get_record_fullness(replay_chan) < replay_buff_size) {
        std::this_thread::sleep_for(50ms);
    }
    cout << "Record fullness:      " << replay_ctrl->get_record_fullness(replay_chan)
         << " bytes" << endl
         << endl;


    /************************************************************************
     * Start replay of data
     ***********************************************************************/
    if (nsamps <= 0) {
        // Replay the entire buffer over and over
        const bool repeat = true;
        cout << "Issuing replay command for " << samples_to_replay
             << " samps in continuous mode..." << endl;
        uhd::time_spec_t time_spec = uhd::time_spec_t(0.0);
        replay_ctrl->play(
            replay_buff_addr, replay_buff_size, replay_chan, time_spec, repeat);
        /** Wait until user says to stop **/
        // Setup SIGINT handler (Ctrl+C)
        std::signal(SIGINT, &sig_int_handler);
        cout << "Replaying data (Press Ctrl+C to stop)..." << endl;
        while (not stop_signal_called) {
            std::this_thread::sleep_for(100ms);
        }
        // Remove SIGINT handler
        std::signal(SIGINT, SIG_DFL);
        cout << endl << "Stopping replay..." << endl;
        replay_ctrl->stop(replay_chan);
        std::cout << "Letting device settle..." << std::endl;
        std::this_thread::sleep_for(1s);
    } else {
        // Replay nsamps, wrapping back to the start of the buffer if nsamps is
        // larger than the buffer size.
        replay_ctrl->config_play(replay_buff_addr, replay_buff_size, replay_chan);
        uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
        stream_cmd.num_samps = nsamps;
        cout << "Issuing replay command for " << nsamps << " samps..." << endl;
        stream_cmd.stream_now = true;
        replay_ctrl->issue_stream_cmd(stream_cmd, replay_chan);
        std::cout << "Waiting until replay buffer is clear..." << std::endl;
        const double stream_duration = static_cast<double>(nsamps) / rate;
        std::this_thread::sleep_for(
            std::chrono::milliseconds(static_cast<int64_t>(stream_duration * 1000))
            + 500ms); // Slop factor
    }

    return EXIT_SUCCESS;
}