1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
//
// Copyright 2010-2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/thread.hpp>
#include <boost/asio.hpp>
#include <boost/format.hpp>
#include <boost/program_options.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/thread.hpp>
#include <chrono>
#include <csignal>
#include <cstdlib>
#include <iostream>
#include <thread>
#include <vector>
namespace po = boost::program_options;
namespace asio = boost::asio;
typedef boost::shared_ptr<asio::ip::udp::socket> socket_type;
static const size_t insane_mtu = 9000;
#if defined(UHD_PLATFORM_MACOS)
// limit buffer resize on macos or it will error
const size_t rx_dsp_buff_size = size_t(1e6);
#else
// set to half-a-second of buffering at max rate
const size_t rx_dsp_buff_size = size_t(50e6);
#endif
const size_t tx_dsp_buff_size = (1 << 20);
/***********************************************************************
* Signal handlers
**********************************************************************/
static bool stop_signal_called = false;
void sig_int_handler(int)
{
stop_signal_called = true;
}
static bool wait_for_recv_ready(int sock_fd)
{
// setup timeval for timeout
timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 100000; // 100ms
// setup rset for timeout
fd_set rset;
FD_ZERO(&rset);
FD_SET(sock_fd, &rset);
// call select with timeout on receive socket
return ::select(sock_fd + 1, &rset, NULL, NULL, &tv) > 0;
}
/***********************************************************************
* Relay class
**********************************************************************/
class udp_relay_type
{
public:
udp_relay_type(const std::string& server_addr,
const std::string& client_addr,
const std::string& port,
const size_t server_rx_size = 0,
const size_t server_tx_size = 0,
const size_t client_rx_size = 0,
const size_t client_tx_size = 0)
: _port(port)
{
{
asio::ip::udp::resolver resolver(_io_service);
asio::ip::udp::resolver::query query(asio::ip::udp::v4(), server_addr, port);
asio::ip::udp::endpoint endpoint = *resolver.resolve(query);
_server_socket = boost::shared_ptr<asio::ip::udp::socket>(
new asio::ip::udp::socket(_io_service, endpoint));
resize_buffs(_server_socket, server_rx_size, server_tx_size);
}
{
asio::ip::udp::resolver resolver(_io_service);
asio::ip::udp::resolver::query query(asio::ip::udp::v4(), client_addr, port);
asio::ip::udp::endpoint endpoint = *resolver.resolve(query);
_client_socket = boost::shared_ptr<asio::ip::udp::socket>(
new asio::ip::udp::socket(_io_service));
_client_socket->open(asio::ip::udp::v4());
_client_socket->connect(endpoint);
resize_buffs(_client_socket, client_rx_size, client_tx_size);
}
std::cout << "spawning relay threads... " << _port << std::endl;
boost::unique_lock<boost::mutex> lock(
spawn_mutex); // lock in preparation to wait for threads to spawn
(void)_thread_group.create_thread(
boost::bind(&udp_relay_type::server_thread, this));
wait_for_thread.wait(lock); // wait for thread to spin up
(void)_thread_group.create_thread(
boost::bind(&udp_relay_type::client_thread, this));
wait_for_thread.wait(lock); // wait for thread to spin up
std::cout << " done!" << std::endl << std::endl;
}
~udp_relay_type(void)
{
std::cout << "killing relay threads... " << _port << std::endl;
_thread_group.interrupt_all();
_thread_group.join_all();
std::cout << " done!" << std::endl << std::endl;
}
private:
static void resize_buffs(socket_type sock, const size_t rx_size, const size_t tx_size)
{
if (rx_size != 0)
sock->set_option(asio::socket_base::receive_buffer_size(rx_size));
if (tx_size != 0)
sock->set_option(asio::socket_base::send_buffer_size(tx_size));
}
void server_thread(void)
{
std::cout << " entering server_thread..." << std::endl;
wait_for_thread.notify_one(); // notify constructor that this thread has started
std::vector<char> buff(insane_mtu);
while (not boost::this_thread::interruption_requested()) {
if (wait_for_recv_ready(_server_socket->native_handle())) {
boost::mutex::scoped_lock lock(_endpoint_mutex);
const size_t len = _server_socket->receive_from(
asio::buffer(&buff.front(), buff.size()), _endpoint);
lock.unlock();
_client_socket->send(asio::buffer(&buff.front(), len));
// perform sequence error detection on tx dsp data (can detect bad network
// cards)
/*
if (_port[4] == '7'){
static uint32_t next_seq;
const uint32_t this_seq = ntohl(reinterpret_cast<const uint32_t
*>(&buff.front())[0]); if (next_seq != this_seq and this_seq != 0)
std::cout << "S" << std::flush; next_seq = this_seq + 1;
}
*/
}
}
std::cout << " exiting server_thread..." << std::endl;
}
void client_thread(void)
{
std::cout << " entering client_thread..." << std::endl;
wait_for_thread.notify_one(); // notify constructor that this thread has started
std::vector<char> buff(insane_mtu);
while (not boost::this_thread::interruption_requested()) {
if (wait_for_recv_ready(_client_socket->native_handle())) {
const size_t len =
_client_socket->receive(asio::buffer(&buff.front(), buff.size()));
boost::mutex::scoped_lock lock(_endpoint_mutex);
_server_socket->send_to(asio::buffer(&buff.front(), len), _endpoint);
}
}
std::cout << " exiting client_thread..." << std::endl;
}
const std::string _port;
boost::thread_group _thread_group;
asio::io_service _io_service;
asio::ip::udp::endpoint _endpoint;
boost::mutex _endpoint_mutex;
socket_type _server_socket, _client_socket;
boost::mutex spawn_mutex;
boost::condition_variable wait_for_thread;
};
/***********************************************************************
* Main
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char* argv[])
{
// variables to be set by po
std::string addr;
std::string bind;
// setup the program options
po::options_description desc("Allowed options");
// clang-format off
desc.add_options()
("help", "help message")
("addr", po::value<std::string>(&addr), "the resolvable address of the usrp (must be specified)")
("bind", po::value<std::string>(&bind)->default_value("0.0.0.0"), "bind the server to this network address (default: any)")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// print the help message
if (vm.count("help") or not vm.count("addr")) {
std::cout << boost::format("UHD Network Relay %s") % desc << std::endl
<< "Runs a network relay between UHD on one computer and a USRP on the "
"network.\n"
<< "This example is basically for test purposes. Use at your own "
"convenience.\n"
<< std::endl;
return EXIT_FAILURE;
}
{
boost::shared_ptr<udp_relay_type> ctrl(new udp_relay_type(bind, addr, "49152"));
boost::shared_ptr<udp_relay_type> rxdsp0(new udp_relay_type(
bind, addr, "49156", 0, tx_dsp_buff_size, rx_dsp_buff_size, 0));
boost::shared_ptr<udp_relay_type> txdsp0(new udp_relay_type(
bind, addr, "49157", tx_dsp_buff_size, 0, 0, tx_dsp_buff_size));
boost::shared_ptr<udp_relay_type> rxdsp1(new udp_relay_type(
bind, addr, "49158", 0, tx_dsp_buff_size, rx_dsp_buff_size, 0));
boost::shared_ptr<udp_relay_type> gps(new udp_relay_type(bind, addr, "49172"));
std::signal(SIGINT, &sig_int_handler);
std::cout << "Press Ctrl + C to stop streaming..." << std::endl;
while (not stop_signal_called) {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
// finished
std::cout << std::endl << "Done!" << std::endl << std::endl;
return EXIT_SUCCESS;
}
|