aboutsummaryrefslogtreecommitdiffstats
path: root/host/docs/usrp_e3x0.dox
blob: cc2b999455a34abb0d376b50deb6b5e4a6cd5a49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
/*! \page page_usrp_e3x0 USRP-E3xx Series

\tableofcontents

\section e3x0_feature_list Comparative features list - E310

- Hardware Capabilities:
	  Integrated RF frontend (70 MHz - 6 GHz)
	- External PPS reference input
	- Configurable clock rate
	- Internal GPIO connector with UHD API control
	- 2 USB 2.0 Host ports
	- Internal GPS
	- Soundcard mono input / stereo output
	- USB UART
	- Internal IMU
	- Zynq-7020 FPGA
- FPGA Capabilities:
        - 2 RX DDC chains in FPGA
        - 2 TX DUC chain in FPGA
	- Timed sampling in FPGA
	- 16-bit fixed point sample mode (sc16)

\section e3x0_getting_started Getting started

This will run you through the first steps relevant to get your USRP E310
up and running.

\subsection e3x0_first_boot First boot

There are two different methods to connect to the device

- using the onboard Serial to USB connector
- using the gigabit Ethernet connector and a ssh client on your host computer

For the first boot, booting with the serial cable connected to the device
is recommended, as it allows to review and modify the \ref e3xx_network_configuration
and allows to enter the bootloader in case of issues during the boot.


\subsubsection e3x0_first_boot_serial Serial connection

To use the serial connection together with a Linux or OSX machine (most other UNIX variants come with a version of screen, too)
a terminal emulator such as screen can be used:

    $ sudo screen /dev/ttyUSB0 115200

The exact device node /dev/ttyUSB0 depends on your operating system's driver and other USB devices that might be already connected.
It can be usually found by perusing the output of dmesg or journalctl, after connecting the USRP E310 device to your host computer.

An example of a dmesg output for the serial to usb converter:

    924.102764] usb 1-1: FTDI USB Serial Device converter now attached to ttyUSB0


On Microsoft Windows the serial connection can be established using a tool such as Putty by selecting a baudrate of 115200 and the corresponding serial port for the serial to usb converter.

In both cases you should see boot messages fly by and finally end up with a login prompt similar to the following:

    ettus-e300 login:

Note: The username is 'root' and the default password is empty.

You should be presented with a shell similar to the following

    root@ettus-e300:~#


\subsubsection e3x0_first_boot_ssh SSH connection

The USRP E310 device relies on the DHCP protocol to automatically obtain an IP address.
In case your network setup does not include a DHCP server, refer to the section \ref e3x0_first_boot_serial or configure a DHCP server to hand out IP addresses on your network.

After the device obtained an IP address you can log in from a Linux or OSX machine by typing:

    $ ssh root@192.168.10.42

where the IP address depends on your local network setup.

On Microsoft Windows again the connection can be established using a tool such as Putty, by selecting a username of root without password.

You should be presented with a shell similar to the following

    root@ettus-e300:~#

\section e3x0_sdk Using the SDK

In order to facilitate software development for the integrated ARM Cortex-A9 processor, a <a href="http://www.yoctoproject.org">Yocto Project</a> based SDK is provided in the download section of our <a href="http://files.ettus.com/e3xx_images">website</a>.
This SDK contains a cross-compiler, a cross-linker as well as a cross-debugger and can be used to develop your user space applications for the Ettus USRP-E310 devices.


\subsection e3x0_sdk_installation Installation
The following section will guide you through the installation of the provided SDK on a Linux development machine.

\subsubsection e3x0_sdk_installation_download Obtaining the correct SDK
It is necessary for the SDK version and the image version to match, to ensure the versions of the software installed on the device and the version of the software the SDK will build against match.

If you are not sure which image is installed on your device, upgrading to the latest stable version is recommended. See the appropriate section for details on upgrading.

\subsubsection e3x0_sdk_installation_install Obtaining the right toolchain

To install the toolchain you downloaded type:

    $ ./oecore-x86_64-armv7ahf-vfp-neon-toolchain-nodistro.0.sh

This will prompt you for an installation path.
Please ensure you have sufficient disk space, as each of the SDKs may require several gigabytes of disk space (depends on the image flavor selected).

This will allow you to compile UHD as well as (depending on the image flavor) other software.

Please note, that while several toolchains can be installed in parallel, they have to be installed to different directories.

\subsection e3x0_sdk_usage Usage

Having installed the toolchain in the last step,
in order to build software for your device open a new shell and type:

    $ . <yoursdkinstallpath>/environment-setup-armv7ahf-vfp-neon-oe-linux-gnueabi

This will modify the PATH, CC, CXX etc, environment variables and allow you to compile software for your USRP E310 device.
To verify all went well you can try:

    $ $CC -dumpmachine

which should return 'arm-oe-linux-gnueabi'.

\subsubsection e3x0_sdk_usage_uhd Building UHD

The E310 comes with UHD already installed on the SD card. You will only need
to build UHD and install it if there is a critical bug fix in a later UHD or you
have custom UHD modifications. 

-# Obtain the UHD source code via git or tarball
-# Setup your environment as described in \ref e3x0_sdk_usage
-# Type the following in the build directory (assuming a build in host/build):

        $ cmake -DCMAKE_TOOLCHAIN_FILE=../host/cmake/Toolchains/oe-sdk_cross.cmake -DCMAKE_INSTALL_PREFIX=/usr -DENABLE_E300=ON -DENABLE_GPSD=ON ..
        $ make

For instructions on building UHD on a PC to interact with your E-Series device, follow these instructions: \ref e3x0_uhd_build

\subsubsection e3x0_sdk_usage_gnuradio Building GNU Radio

GNU Radio is already installed on the SD card. You only need to build GNU Radio
for the E3XX if you are doing custom GNU Radio development work.

-# Obtain the gnuradio source code via git.
-# Setup the environment as described in \ref e3x0_sdk_usage
-# Use the following commands to create a build directory, configure and compile gnuradio. You only need create the build directory once.

\code{.sh}
$ mkdir build-arm
$ cd build-arm
$ cmake -Wno-dev -DCMAKE_TOOLCHAIN_FILE=../cmake/Toolchains/oe-sdk_cross.cmake \-DCMAKE_INSTALL_PREFIX=/usr -DENABLE_GR_VOCODER=OFF -DENABLE_GR_ATSC=OFF \
-DENABLE_GR_DTV=OFF -DENABLE_DOXYGEN=OFF ../
\endcode

Several GNU Radio components depend on running binaries built for the build
machine during compile. These binaries can be built and used for cross
compiling, but this is an advanced topic.

\section e3x0_image_building Rebuilding the file system

The file system images are built using OpenEmbedded Core. The `repo` tool is
used to manage the versions of the various layers that supply recipes for
building the image. For more documentation see http://www.yoctoproject.org.
These notes will show you how to rebuild the files used to create the SD
card included with the E310. These instructions assume you have a working
knowledge of Linux.

Once you have rebuilt the factory image, you can create your own custom recipes
to build file system images for specific application.

-# Install `repo`.
\code{.sh}
 $ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > repo
 $ chmod a+x repo
 $ sudo mv repo /usr/local/bin
\endcode

-# Configure the repo manifest that controls the build.
\code{.sh}
 $ mkdir e300-oe-build
 $ cd e300-oe-build
 $ repo init -u git://github.com/EttusResearch/e300-manifest.git -b Release-4
\endcode

-# Initialize the environment. This will take a little while.
\code{.sh}
 $ repo sync
 $ TEMPLATECONF=`pwd`/meta-ettus/conf source ./oe-core/oe-init-build-env ./build ./bitbake
\endcode
At this point you should review the file in conf/local.conf and make sure
path names make sense for your machine.

-# Build an image. This will take a few hours, especially the first run since
it will download all the required sources. (These are saved locally for future
builds)
\code{.sh}
 $ export MACHINE="ettus-e3xx-sg1"
 $ bitbake gnuradio-dev-image
\endcode

When this completes, the files needed to create the SD card are in
`tmp-glibc/deploy/images/ettus-e300`. Building the file that is written
directly to the SD card is covered later in this document.

-# Build the toolchain.
\code{.sh}
 $ bitbake -c populate_sdk gnuradio-dev-image
\endcode
The sdk is in `tmp-glibc/deploy/sdk`
Note that you can set the `MACHINE` variable in `local.conf so that you no
longer need to set it from the command line.

-# Building the complete set of E3XX image files and sdk.

There is a script in the meta-ettus BSP layer that builds SD card images for
all E3XX series devices and the sdk.

From the build directory run:
\code{.sh}
 $ sh ../meta-ettus/scripts/build-all.sh
\endcode

When the script finishes, the SD card image files are in ./images and the sdk
is in tmp-glibc/deploy/sdk/ .

-# Using the environment
When you log back in, you will need to setup the OpenEmbedded environment
again by:
    \code{.sh}
     $ cd e300-oe-build/oe-core
     $ . oe-core/oe-init-build-env ./build ./bitbake
    \endcode

\section e3x0_upgrade_sd_card Upgrading / Writing image to sd card

In order to upgrade or reinitialize a sd card for the first time, you can use the 'dd' tool.
Make sure that you are using the right block device for your sd card as failing to do so can wipe your hard drive.

Replace `<yourimage>`.direct with your image file name and `<yoursdcard>` with your blockdevice e.g. /dev/mmcblk0 or /dev/sdb.

    $ sudo dd if=<yourimage>.direct of=/dev/<yoursdcard> bs=1M

Notes: The commands will wipe the entire sd card and reinitialize it. Newer images need a 8GB sd card.

\section e3x0_load_fpga_imgs Specifying a Non-standard FPGA Image

\subsection e3x0_load_fpga_imgs_uhd Using UHD to load FPGA images

UHD software will automatically select the USRP E310 images from the
installed images package. The image selection can be overridden with the
`fpga` device address parameter.

Example device address string representations to specify non-standard
image:

    $ uhd_usrp_probe --args='fpga=usrp_e310_fpga.bit'

\subsection e3x0_load_fpga_imgs_jtag Using JTAG to load FPGA images

The USRP-E Series device features an on-board JTAG connector (see \ref e3x0_hw_chipscope) that can be accessed on the PCB
of the device. The iMPACT tool in the <a href="http://www.xilinx.com/support/download/index.htm">Xilinx Programming Tools (ISE, iMPACT)</a> package can be used to load an image over the JTAG interface.

If you have iMPACT installed, you can use the `impact_jtag_programmer.sh` tool to install images. Make sure your e3x0 is powered on and connected to your computer using the internal JTAG connector. Then run the tool:

    <path_to_uhd_tools>/impact_jtag_programmer.sh --fpga-path=<fpga_image_path>

\subsection e3x0_setup_change_ip Change the USRP's IP address

You may need to change the USRP's IP address for several reasons:
- to satisfy your particular network configuration
- to use multiple USRP-E Series devices with the same host computer
- to set a known IP address into USRP (in case you forgot)

For examples refer to the \ref e3xx_network_configuration section.

\section e3x0_hw Hardware Notes

\subsection e3x0_hw_fpanel Front Panel

\image html e3x0_fp_overlay.png "USRP E310 Front panel"

- **RF A Group**
  + **TX/RX LED**: Indicates that data is streaming on the TX/RX channel on frontend side A
  + **RX2 LED**: Indicates that data is streaming on the RX2 channel on frontend side A

- **RF B Group**
  + **TX/RX LED**: Indicates that data is streaming on the TX/RX channel on frontend B
  + **RX2 LED**: Indicates that data is streaming on the RX2 channel on frontend B
- **PWR**: Power switch with integrated status LED, for status description see below.

- **SYNC**: Input port for external PPS signal

- **GPS**: Connection for the GPS antenna

- **AUDIO**: Audio input / output

The status LED in the power switch indicates the power and charge status.
It's behavior is firmware version dependent.

- **Version 1** (original E310)
  + **Off**: Indicates device is off and not charging
  + **Solid Red**: Indicates device is charging
  + **Solid Green**: Indicates device is on
  + **Fast Blinking Red**: Indicates an error code
    + 1 - Low voltage error
    + 2 - Regulator low voltage error
    + 3 - FPGA power error
    + 4 - DRAM power error
    + 5 - 1.8V rail power error
    + 6 - 3.3V rail power error
    + 7 - Daughterboard / TX power error
    + 9 - Temperature error

- **Version 2** (E312 and upgraded E310)
  + **Off**: Indicates device is off and not charging
  + **Slow Blinking Green**: Indicates device is off and charging
  + **Fast Blinking Green**: Indicates device is on and charging
  + **Solid Green**: Indicates device is on (and not charging, if E312)
  + **Solid Orange**: Indicates device is on and discharging
  + **Fast Blinking Orange**: Indicates device is on, discharging, and charge is below 10% charge
  + **Fast Blinking Red**: Indicates an error code
    + 1 - Low voltage error
    + 2 - Regulator low voltage error
    + 3 - FPGA power error
    + 4 - DRAM power error
    + 5 - 1.8V rail power error
    + 6 - 3.3V rail power error
    + 7 - Daughterboard / TX power error
    + 8 - Charger error
    + 9 - Charger temperature error
    + 10 - Battery low error
    + 11 - Fuel Gauge temperature error
    + 12 - Global (case) temperature error

\subsection e3x0_hw_rear_panel Rear Panel

\image html e3x0_rp_overlay.png "USRP E310 Rear Panel"

- **PWR**: Locking connector (Kycon KLDHCX-0202-A-LT) for the USRP-E Series power supply
- **1G ETH**: RJ45 port for Ethernet interfaces
- **USB**: USB 2.0 Port
- **SERIAL**: Micro USB connection for serial uart console

\subsection e3x0_hw_sync Clock and Time Synchronization

Unlike most USRP devices, the E310 does not have independent reference clock and time source inputs.
It is possible, however, to discipline the internal reference clock using an external time (PPS) source
connected to the SYNC input pin. The E310 FPGA has a subsystem that can use the PPS signal from the
SYNC pin or the internal GPS to align edges of the reference clock to edges of a shared PPS signal. 
This alignment happens automatically when the time source in UHD is set to "gpsdo" or "external". 
Please note that because the SYNC input can only accept a PPS signal, the only supported value for 
the reference clock source is "internal". Also, keep in mind that the E310
does *not* have a GPS-disciplined oscillator like other USRPs, the value "gpsdo"
for the time source was chosen for compatibility with other USRPs.


\subsection e3x0_hw_pps PPS - Pulse Per Second
Using a PPS signal for timestamp synchronization requires a LVCMOS or a 5V logic input signal.
An external PPS can be used to discipline the internal reference clock. This feature is automatically 
enabled with the time source is set to "external".

To test the PPS input, you can use the following tool from the UHD examples:

- `<args>` are device address arguments (optional if only one USRP device is on your machine)

    cd <install-path>/lib/uhd/examples
    ./test_pps_input --args=\<args\>

\subsection e3x0_hw_gps Internal GPS

Your USRP-E Series device comes with an internal GPS.
In order to get a lock on a satellite an external GPS antenna is required.
The PPS from the internal GPS can be used to discipline the internal reference
clock. This feature is automatically enabled with the time source is set to
"gpsdo". Again, keep in mind that the E310 does not have an actual
GPS-disciplined oscillator (GPSDO) on the board, the value "gpsdo" was named
such for better compatibility with code written for other devices.

The device provides a 3.3V supply voltage to an external antenna connected to the *GPS* port
of your device. Note that this supply voltage is turned off in order to safe power upon destruction of the software object.

\subsection e3x0_hw_imu Inertial Measurement Unit (IMU)

Your USRP-E Series device has an onboard IMU that provides
9 axis (Gyro, Accelerometer and compass) functionality.

The USRP-E Series images ship with several example applications based on
<a href="https://github.com/richards-tech/RTIMULib">RTIMULib</a> that allow the user
to explore the basic functionality of the IMU as well as to calibrate it.

To test the accelerometer, run:

    $ RTIMULibDrive

This will print the current accelerometer values on the console.

To launch the IMU calibration procedure, run:

    $ RTIMULibCal

and follow the onscreen instructions. Please note that magnetometer calibration is important to obtain
sensible results if the IMU is to be used in sensor fusion applications.

Using X11 forwarding over SSH (see \ref e3x0_faq) a complete sensor fusion application can be run over SSH
from a host computer by typing:

    $ RTIMULibDemo

This should open a graphical window on the host computer that displays the various outputs of the IMU,
as well as quaternion measurements based on different sensor fusion algorithms.

\image html e3x0_imu_demo.png "RTIMULibDemo"

For more advanced IMU based applications please refer to the <a href="https://github.com/richards-tech/RTIMULib">RTIMULib repository</a> as well as the datasheets.

\subsection e3x0_hw_gpio Internal GPIO

### Connector

\image html e3x0_gpio_conn.png "E3xx GPIO Connector"

### Pin Mapping

- Pin 1:   +3.3V
- Pin 2:   Reserved
- Pin 3:   Data[5]
- Pin 4:   Reserved
- Pin 5:   Data[4]
- Pin 6:   Data[0]
- Pin 7:   Data[3]
- Pin 8:   Data[1]
- Pin 9:   0V
- Pin 10:  Data[2]

Please see the \ref page_gpio_api for information on configuring and using the GPIO bus.

\subsection e3x0_hw_audio Audio connectors (if populated)

The E3x0 2.5 mm Audio Jack TRRS pins are assigned as follows: Tip=Mic, Ring1=Right, Ring2=Left, Sleeve=GND. 

\image html TRRS.png "Audio Jack"

The Left/Right audio outputs are compatible with typical low-impedance headphones (16 to 32 Ohms). The Microphone pin provides approximately 2 mA bias at 2.2 V when not suspended. A variety of pin configurations can be found on commonly available headsets, so an adapter may be required.

\subsection e3x0_hw_chipscope Debugging custom FPGA designs with Xilinx Chipscope

### Connector

\image html e3x0_jtag_conn.png "E3xx JTAG Connector"

### Pin Mapping

- Pin 1: TDO
- Pin 2: 3.3V
- Pin 3: TCK
- Pin 4: TDI
- Pin 5: 0V
- Pin 6: TMS


Xilinx chipscope allows for debugging custom FPGA designs similar to a logic analyzer.
USRP-E series devices can be used with Xilinx chipscope using the internal JTAG connector.

Further information on how to use Chipscope can be found in the *Xilinx Chipscope Pro Software and Cores User Guide (UG029)*.

\section e3xx_battery Battery notes

The USRP E312 (and with upgraded firmware E310) supports LiIon Battery packs (e.g. AA Portable Power Corp, 749801-01).

\subsection e3xx_battery_connector Connector

The connector J1 on E312's motherboard is a Molex 53014-6310. The corresponding mating connector is a Molex 51004-0300.

\image html e3xx_conn_photo.jpg "Battery pack connector"

The pins are as follows:
- Pin 1 (Red): VBat
- Pin 2 (Black): GND
- Pin 3 (White): Battery Thermistor

\subsection e3xx_battery_information Driver

The battery information is exposed on the device via the sysfs directory under:

    /sys/class/power_supply/BAT/

and for the charger:

    /sys/class/power_supply/AC/

The values can be accessed via libudev or manually e.g.:

    root@ettus-e3xx: cat /sys/class/power_supply/BAT/status

The driver emits uevents on changes, that can be used to write custom UDev rules.
Using UDev rules one can configure the USRP E3xx to shut down on certain events,
such as low battery charge, high temperatures or AC power plug in.

The following example will cause the system to shut down at a reported temperature
of 73C:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SUBSYSTEM=="power_supply", ATTR{online}=="1", ATTR{temp}=="730", RUN+="/sbin/shutdown -h now"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Another example will cause a safe shutdown once the battery level reaches 5 percent

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SUBSYSTEM=="power_supply", ATTR{online}=="1", ATTR{status}=="Discharging", ATTR{capacity}=="5", RUN+="/sbin/shutdown -h now"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For more information, please see the udev manual pages and <a href ="https://www.kernel.org/doc/Documentation/power/power_supply_class.txt"> Kernel Power Supply Docs </a>.

\subsection e3xx_battery_calibration Calibration Procedure

In order for the fuel gauge to give a usable indication of remaining charge it needs to be calibrated.
The procedure for calibration is as follows:

1. Completely discharge battery (e.g. by booting up without SD card, so OS doesn't autoshutdown)
2. Unplug the battery pack and external power
3. Reconnect the battery pack
4. Reconnect AC power and charge until charge completed.

A faster (less accurate) calibration procedure is as follows:

1. Completely charge battery
2. Type:

    $ echo 3200000 > /sys/class/power_supply/BAT/charge_now

3. Unplug AC power
4. Replug AC power and wait until charge completes

\section e3x0_dboards Daughterboard notes

\subsection e3x0_dboard_e310 E310 MIMO XCVR board

The USRP E310 MIMO XCVR daughterboard features an integrated MIMO capable RF frontend.

\subsubsection e3x0_dboard_e310_tuning Frontend tuning

The RF frontend has individually tunable receive and transmit chains.
Both transmit and receive can be used in a MIMO configuration. For
the MIMO case, both receive frontends share the RX LO, and both transmit
frontends share the TX LO. Each LO is tunable between 50 MHz and 6 GHz.

As there is a single LO for each direction (RX and TX), this means that both
channels need to use the same LO frequency (i.e., both RX channels share an LO
frequency, and both TX channels share an LO frequency). If the two channels
are supposed to receive on different frequencies, the digital tune stages need
to be used for that. The two frequencies will need to be within the currently
selected master clock rate, and the final bandwidths need to be chosen
carefully. Example: Assume the master clock rate is set to 50 MHz, and we want
to receive at 400 MHz and 440 MHz. We can set the LO to 420 MHz, which will
sample the spectrum from 395 MHz to 445 MHz. The LO offsets for both channels
need to be 20 MHz and -20 MHz respectively. However, the final bandwidth should
be less than 10 MHz (preferably lower), or the signals would exhibit aliasing.

Because both channels share an LO, tuning one channel can possibly affect the
other channel. It is advisable to read back the actual, current frequency from
software before assuming the device is tuned to a specific frequency.

\subsubsection e3x0_dboard_e310_gain Frontend gain

All frontends have individual analog gain controls. The receive
frontends have 76 dB of available gain; and the transmit frontends have
89.5 dB of available gain. Gain settings are application specific, but
it is recommended that users consider using at least half of the
available gain to get reasonable dynamic range.

\subsubsection e3x0_dboard_e310_pll Frontend LO lock status

The frontends provide a *lo-locked* sensor that can be queried through the UHD API.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
// assumes 'usrp' is a valid uhd::usrp::multi_usrp::sptr instance

// get status for rx frontend
usrp->get_rx_sensor("lo-locked");

// get status for tx frontend
usrp->get_tx_sensor("lo-locked");
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\subsubsection e3x0_dboard_e310_band_select Frontend Filter and Antenna Switches

The transmit and receive filter banks uses switches to select between the available filters. These paths are
also dependent on the antenna switch settings. Incorrectly setting the switches generally results
in attenuated input / output power. Receive filters are band pass (series high & low pass filters), 
transmit filters are low pass.

Source code related to controlling the filter band and antenna switches resides in e300_impl.c. Specifically, refer to methods 
`e300_impl::_update_bandsel`, `e300_impl::_update_atrs`, `e300_impl::_update_gpio`, and `e300_impl::_update_enables`. Generally, these 
methods set the switches depending on the state of transmit and receive streams.

The following sections provide switch setting tables for antenna and filter selection for frontends A & B receive and transmit paths.
For further details refer to the schematics. 

\subsubsection e3x0_dboard_e310_frontend_a_switches Frontend Side A Filter and Antenna Switches

_Note: X = don't care, T = If full duplex, set bits according to transmit table, otherwise don't care.
Filter range A – B will be selected if A <= freq < B._

__Receive__
RX Port | RX Filter (MHz) | VCTXRX2_V1,V2 | VCRX2_V1,V2 | RX2_BANDSEL[2:0] | RX2B_BANDSEL[1:0] | RX2C_BANDSEL[1:0]
:-----: | :-------------: | :-----------: | :---------: | :--------------: | :---------------: | :---------------:
TRX-A   | < 450           | 01            | 10          | 101              | XX                | 01               
TRX-A   | 450 – 700       | 01            | 10          | 011              | XX                | 11               
TRX-A   | 700 – 1200      | 01            | 10          | 001              | XX                | 10               
TRX-A   | 1200 – 1800     | 01            | 10          | 000              | 01                | XX               
TRX-A   | 1800 – 2350     | 01            | 10          | 010              | 11                | XX               
TRX-A   | 2350 – 2600     | 01            | 10          | 100              | 10                | XX               
TRX-A   | 2600 – 6000     | 01            | 01          | XXX              | XX                | XX               
RX2-A   | 70  – 450       | TT            | 01          | 101              | XX                | 01               
RX2-A   | 450 – 700       | TT            | 01          | 011              | XX                | 11               
RX2-A   | 700 – 1200      | TT            | 01          | 001              | XX                | 10               
RX2-A   | 1200 – 1800     | TT            | 01          | 000              | 01                | XX               
RX2-A   | 1800 – 2350     | TT            | 01          | 010              | 11                | XX               
RX2-A   | 2350 – 2600     | TT            | 01          | 100              | 10                | XX               
RX2-A   | >= 2600         | TT            | 10          | XXX              | XX                | XX               

__Transmit__
TX Port | TX Filter (MHz) | VCTXRX2_V1,V2 | TX_ENABLE2A,2B | TX_BANDSEL[2:0]
:-----: | :-------------: | :-----------: | :------------: | :-------------:
TRX-A   | < 117.7         | 10            | 01             | 111            
TRX-A   | 117.7 – 178.2   | 10            | 01             | 110            
TRX-A   | 178.2 – 284.3   | 10            | 01             | 101            
TRX-A   | 284.3 – 453.7   | 10            | 01             | 100            
TRX-A   | 453.7 – 723.8   | 10            | 01             | 011            
TRX-A   | 723.8 – 1154.9  | 10            | 01             | 010            
TRX-A   | 1154.9 – 1842.6 | 10            | 01             | 001            
TRX-A   | 1842.6 – 2940.0 | 10            | 01             | 000            
TRX-A   | >= 2940.0       | 11            | 10             | XXX            
_Note: Although the transmit filters are low pass, this table describes UHD's tuning range for selecting each filter path.
The table also includes the required transmit enable state._

\subsubsection e3x0_dboard_e310_frontend_b_switches Frontend Side B Filter and Antenna Switches

_Note: X = don't care, T = If full duplex, set bits according to transmit table, otherwise don't care.
Filter range A – B will be selected if A <= freq < B._

__Receive__
RX Port | RX Filter (MHz) | VCTXRX1_V1,V2 | VCRX1_V1,V2 | RX1_BANDSEL[2:0] | RX1B_BANDSEL[1:0] | RX1C_BANDSEL[1:0]
:-----: | :-------------: | :-----------: | :---------: | :--------------: | :---------------: | :---------------:
TRX-B   | < 450           | 10            | 01          | 100              | XX                | 10               
TRX-B   | 450 – 700       | 10            | 01          | 010              | XX                | 11               
TRX-B   | 700 – 1200      | 10            | 01          | 000              | XX                | 01               
TRX-B   | 1200 – 1800     | 10            | 01          | 001              | 10                | XX               
TRX-B   | 1800 – 2350     | 10            | 01          | 011              | 11                | XX               
TRX-B   | 2350 – 2600     | 10            | 01          | 101              | 01                | XX               
TRX-B   | 2600 – 6000     | 10            | 10          | XXX              | XX                | XX               
RX2-B   | 70  – 450       | TT            | 01          | 100              | XX                | 10               
RX2-B   | 450 – 700       | TT            | 01          | 010              | XX                | 11               
RX2-B   | 700 – 1200      | TT            | 01          | 000              | XX                | 01               
RX2-B   | 1200 – 1800     | TT            | 01          | 001              | 10                | XX               
RX2-B   | 1800 – 2350     | TT            | 01          | 011              | 11                | XX               
RX2-B   | 2350 – 2600     | TT            | 01          | 101              | 01                | XX               
RX2-B   | >= 2600         | TT            | 10          | XXX              | XX                | XX               

__Transmit__
TX Port | TX Filter (MHz) | VCTXRX1_V1,V2 | TX_ENABLE1A,1B | TX1_BANDSEL[2:0]
:-----: | :-------------: | :-----------: | :------------: | :--------------:
TRX-B   | < 117.7         | 00            | 01             | 111             
TRX-B   | 117.7 – 178.2   | 00            | 01             | 110             
TRX-B   | 178.2 – 284.3   | 00            | 01             | 101             
TRX-B   | 284.3 – 453.7   | 00            | 01             | 100             
TRX-B   | 453.7 – 723.8   | 00            | 01             | 011             
TRX-B   | 723.8 – 1154.9  | 00            | 01             | 010             
TRX-B   | 1154.9 – 1842.6 | 00            | 01             | 001             
TRX-B   | 1842.6 – 2940.0 | 00            | 01             | 000             
TRX-B   | >= 2940.0       | 11            | 10             | XXX             
_Note: Although the transmit filters are low pass, the following table describes UHD's tuning range for selecting each filter path.
The table also includes the required transmit enable states._

\section e3xx_network_configuration Network configuration

Your USRP E3XX Series device can be configured by editing the /etc/network/interfaces.<br>
The device defaults to *DHCP*, meaning it will query the local network's DHCP server for an address.

\subsection e3xx_network_dhcp DHCP

The default configuration should look similar to, instructing your device to query
local DHCP servers for an IP address, gateway, etc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
auto eth0
iface eth0 inet dhcp
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In order to change the hostname used to obtain an IP address via DHCP change

    /etc/hostname

and edit:

    /etc/network/interfaces

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
auto eth0
iface eth0 inet dhcp
    hostname your-hostname
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note: In rare occasions it might be necessary to increase the timeout value
for the dhcp client running on the device in order for autoconfiguration
to succeed.

In order to increase the timeout to e.g. 40 seconds edit:

    /etc/network/interfaces

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
auto eth0
iface eth0 inet dhcp
    hostname your-hostname
    udhcpc_opts -t 40
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\subsection e3xx_network_static Static IP

To configure a static IP address edit

    /etc/network/interfaces

to look like

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
auto eth0
iface eth0 inet static
    address your-ip
    netmask your-netmask
    gateway your-gateway
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\section e3x0_misc Miscellaneous

\subsection e3x0_misc_multirx Multiple RX channels

There are two complete DDC and DUC DSP chains in the FPGA. In the single channel case,
only one chain is ever used. To receive / transmit from both channels, the user must set the **RX** or **TX**
subdevice specification.

In the following example, a E310 MIMO XCVR is installed.
Channel 0 is sourced from subdevice **A**,
and channel 1 is sourced from subdevice **B**

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
// assumes 'usrp' is a valid uhd::usrp::multi_usrp::sptr instance

usrp->set_rx_subdev_spec("A:A A:B");
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\subsection e3x0_misc_sensors Available Sensors

The following sensors are available for the USRP-E Series motherboards;
they can be queried through the API.

- **fe_locked** - rx / tx frontend PLL locked
- **temp** - processor temperature value
- **gps_time** and **gps_locked** sensors are added when the GPS is found

\subsection e3x0_network_mode Network Mode

Your USRP-E series device can be used in network mode for narrow band signal observation, evaluation and debugging purposes. See the instructions below for how to use network mode.

Please note that when compared with normal operation as a standalone device the usable bandwidth is limited and therefore Network Mode is not the recommended mode of operation.

\subsubsection e3x0_uhd_build Building UHD

To work with your E-Series device in network mode, you will need to build UHD on your PC with extra CMake flags. Assuming you are in the host/build directory,
see below:

        $ cmake -DENABLE_E300=ON -DE300_FORCE_NETWORK=ON ..
        $ make

Once UHD is installed on your device, it will be able to interact with an E-Series device with network mode active (see below).

\subsubsection e3x0_activating_network Activating Network Mode on the Device

In order to use the device in network mode it is necessary to start the *usrp_e3x0_network_mode* executable on the device.
In order to start the executable please log into your device either via SSH or serial console(see \ref e3x0_first_boot) and type

    $ usrp_e3x0_network_mode

Your device should now be discoverable by your host computer via the usual UHD tools. If you are having trouble communicating with your device see the \ref e3x0_comm_problems section.

\subsubsection e3x0_addressing Addressing the Device

### Single device configuration

In a single-device configuration,
the USRP device must have a unique IPv4 address on the host computer.
The USRP can be identified through its IPv4 address or resolvable hostname.
See the application notes on \ref page_identification.
Use this addressing scheme with the uhd::usrp::multi_usrp interface (not a typo!).

Example device address string representation for a USRP-E Series device with IPv4 address 192.168.10.2:

    addr=192.168.10.2

### Multiple device configuration

In a multi-device configuration,
each USRP device must have a unique IPv4 address on the host computer.
The device address parameter keys must be suffixed with the device index.
Each parameter key should be of the format \<key\>\<index\>.
Use this addressing scheme with the uhd::usrp::multi_usrp interface.

- The order in which devices are indexed corresponds to the indexing of the transmit and receive channels.
- The key indexing provides the same granularity of device identification as in the single device case.

Example device address string representation for 2 USRPs with IPv4 addresses **192.168.10.2** and **192.168.20.2**:

    addr0=192.168.10.2, addr1=192.168.20.2

\subsection e3xx_nfs_root Booting from a NFS root

Booting your device from a NFS root might be desirable for remote deployment, management or similar applications.

Requirements:

- NFS server (for configuration see your Linux distribution's documentation)
- dtc (devicetree compiler)
- Filesystem image

\subsubsection e3xx_nfs_root_extract Extracting the filesystems

The first step to make a root filesystem available via NFS is to extract the root file system.
This can be done as follows:

    $ sfdisk -l -uS <your-image>.direct

Which should produce output similar to:

    Disk release3-image.direct: 7 GiB, 7516197888 bytes, 14680074 sectors
    Units: sectors of 1 * 512 = 512 bytes
    Sector size (logical/physical): 512 bytes / 512 bytes
    I/O size (minimum/optimal): 512 bytes / 512 bytes
    Disklabel type: dos
    Disk identifier: 0x8bc3587b

    Device                 Boot Start      End  Sectors Size Id Type
    release3-image.direct1 *        8    36871    36864  18M  c W95 FAT32 (LBA)
    release3-image.direct2      36872 14680071 14643200   7G 83 Linux

From this one can see the second partition (root filesystem) starts at sector *36872*,
and has a length of *14680071*. We can use the *dd* tool to extract the root filesystem
into a handy file.

    $ dd if=<yourimage>.direct of=<yourimage_rootfs>.direct offset=36872 count=14643200

The same procedure can be done for the boot partition.

    $ dd if=<yourimage>.direct of=<yourimage_boot>.direct offset=8 count=36864

Both of these files are mountable on your NFS server, e.g. by:

    $ mount <yourimage_rootfs>.direct /srv/nfs/root-e3xx
    $ mount <yourimage_rootfs>.direct /srv/nfs/root-e3xx/media/FAT

Copy the uImage, uEnv.txt, u-boot.img, boot.bin from the extracted boot partition to the
boot partition of your device's card.

Use the devicetree compiler to modify e300-devicetree.dtb file as follows:

    $ dtc -I dtb -O dts e300-devicetree.dtb -o e300-devicetree.dts

Using your editor of choice modify the *chosen* property in e300-devicetree.dts from:

    console=ttyPS0,115200 root=/dev/mmc0blkp2 rw rootwait earlyprintk

to:

    console=ttyPS0,115200 root=/dev/nfs rw nfsroot=<yourserverip>:<yourpath>,vers=3 rootwait ip=dhcp earlyprintk

Use the devicetree compiler to compile the modified devicetree as follows:

    $ dtc e300-devicetree.dts -o e300-devicetree.dtb

Copy the modified *e300-devicetree.dtb* to your device's card.

For more information on server configuration please refer to your Linux distribution's NFS Server manual,
for more information about NFS root see the
<a href=https://www.kernel.org/doc/Documentation/filesystems/nfs/nfsroot.txt>Linux Kernel NFS Root documentation</a>

\section e3x0_comm_problems Communication Problems

When setting up a development machine for the first time,
you may have various difficulties communicating with the USRP device.
The following tips are designed to help narrow down and diagnose the problem.

\subsection e3x0_comm_problems_runtimeerr RuntimeError: no control response

This is a common error that occurs when you have set the subnet of your network
interface to a different subnet than the network interface of the USRP device.  For
example, if your network interface is set to **192.168.20.1**, and the USRP device is **192.168.10.2**
(note the difference in the third numbers of the IP addresses), you
will likely see a 'no control response' error message.

Fixing this is simple - just set the your host PC's IP address to the same
subnet as that of your USRP device. Instructions for setting your IP address are in the
previous section of this documentation.

\subsection e3x0_comm_problems_firewall Firewall issues

When the IP address is not specified,
the device discovery broadcasts UDP packets from each Ethernet interface.
Many firewalls will block the replies to these broadcast packets.
If disabling your system's firewall
or specifying the IP address yields a discovered device,
then your firewall may be blocking replies to UDP broadcast packets.
If this is the case, we recommend that you disable the firewall
or create a rule to allow all incoming packets with UDP source port **49152**.

\subsection e3x0_comm_problems_ping Ping the device
The USRP device will reply to ICMP echo requests ("ping").
A successful ping response means that the device has booted properly
and that it is using the expected IP address.

    ping 192.168.10.2

\subsection e3x0_comm_problems_monitor Monitor the host network traffic
Use Wireshark to monitor packets sent to and received from the device.

\subsection e3x0_comm_problems_leds Observe Ethernet port LEDs
When there is network traffic arriving at the Ethernet port, LEDs will light up.
You can use this to make sure the network connection is correctly set up, e.g.
by pinging the USRP and making sure the LEDs start to blink.


\subsection e3x0_faq Frequently Asked Questions

 - Communication
  -# How do I enable X forwarding so I can run X apps on the E3x0?<br>
     In the file `/etc/ssh/sshd_config`, uncomment the line \#`X11Forwarding no`
     and change "no" to "yes".

 - Firmware
  -# With Firmware 2.0 the device no longer turns on when AC power is plugged.<br>
     This setting can be adjusted via `/sys/devices/axi_pmu.3/autoboot`.

     Using `$ echo 1 > /sys/devices/axi_pmu.3/autoboot` autoboot is turned on.

     Using `$ echo 0 > /sys/devices/axi_pmu.3/autoboot` autoboot is turned off.

     Note that the path above is subject to change depending on device tree changes.

\section e3x0_apps Applications

\subsection e3x0_apps_gsm GSM Base Station

OpenBTS allows the USRP E310 to serve as a GSM base station capable of providing voice and messaging services to standard GSM handsets. General information on the OpenBTS project can be found at the official webpage.

http://www.openbts.org

Special instructions to install OpenBTS on the E310 can be found on the OpenBTS wiki.

http://openbts.org/w/index.php/E3x0


*/
// vim:ft=doxygen: