1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
//
// Copyright 2021 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: x4xx_qsfp_wrapper_temp
//
// Description:
//
// Translation layer between Verilog and SystemVerilog for x4xx_qsfp_wrapper.
//
// Parameters:
//
// PROTOCOL : Indicates the protocol to use for each of the 4 QSFP
// lanes. See x4xx_mgt_types.vh for possible values.
// CPU_W : Width of CPU interface
// CHDR_W : CHDR bus width
// BYTE_MTU : Transport MTU in bytes
// PORTNUM : Port number to distinguish multiple QSFP ports
// RFNOC_PROTOVER : RFNoC protocol version for IPv4 interface
//
`include "./x4xx_mgt_types.vh"
module x4xx_qsfp_wrapper_temp #(
parameter PROTOCOL0 = `MGT_Disabled,
parameter PROTOCOL1 = `MGT_Disabled,
parameter PROTOCOL2 = `MGT_Disabled,
parameter PROTOCOL3 = `MGT_Disabled,
parameter CPU_W = 64,
parameter CHDR_W = 64,
parameter BYTE_MTU = $clog2(8*1024),
parameter [7:0] PORTNUM = 8'd0
) (
// Resets
input logic areset,
input logic bus_rst,
input logic clk40_rst,
// Clocks
input logic refclk_p,
input logic refclk_n,
input logic clk100,
input logic clk40,
input logic bus_clk,
// AXI-Lite
input logic [39:0] s_axi_awaddr,
input logic s_axi_awvalid,
output logic s_axi_awready,
input logic [31:0] s_axi_wdata,
input logic [ 3:0] s_axi_wstrb,
input logic s_axi_wvalid,
output logic s_axi_wready,
output logic [ 1:0] s_axi_bresp,
output logic s_axi_bvalid,
input logic s_axi_bready,
input logic [39:0] s_axi_araddr,
input logic s_axi_arvalid,
output logic s_axi_arready,
output logic [31:0] s_axi_rdata,
output logic [ 1:0] s_axi_rresp,
output logic s_axi_rvalid,
input logic s_axi_rready,
// MGT high-speed IO
output logic [3:0] tx_p,
output logic [3:0] tx_n,
input logic [3:0] rx_p,
input logic [3:0] rx_n,
// CHDR router interface
output logic [4*CHDR_W-1:0] e2v_tdata,
output logic [ 3:0] e2v_tlast,
output logic [ 3:0] e2v_tvalid,
input logic [ 3:0] e2v_tready,
input logic [4*CHDR_W-1:0] v2e_tdata,
input logic [ 3:0] v2e_tlast,
input logic [ 3:0] v2e_tvalid,
output logic [ 3:0] v2e_tready,
// Ethernet DMA AXI to CPU memory
output logic [ 48:0] axi_hp_araddr,
output logic [ 1:0] axi_hp_arburst,
output logic [ 3:0] axi_hp_arcache,
output logic [ 7:0] axi_hp_arlen,
output logic [ 0:0] axi_hp_arlock,
output logic [ 2:0] axi_hp_arprot,
output logic [ 3:0] axi_hp_arqos,
input logic axi_hp_arready,
output logic [ 2:0] axi_hp_arsize,
output logic axi_hp_arvalid,
output logic [ 48:0] axi_hp_awaddr,
output logic [ 1:0] axi_hp_awburst,
output logic [ 3:0] axi_hp_awcache,
output logic [ 7:0] axi_hp_awlen,
output logic [ 0:0] axi_hp_awlock,
output logic [ 2:0] axi_hp_awprot,
output logic [ 3:0] axi_hp_awqos,
input logic axi_hp_awready,
output logic [ 2:0] axi_hp_awsize,
output logic axi_hp_awvalid,
output logic axi_hp_bready,
input logic [ 1:0] axi_hp_bresp,
input logic axi_hp_bvalid,
input logic [127:0] axi_hp_rdata,
input logic axi_hp_rlast,
output logic axi_hp_rready,
input logic [ 1:0] axi_hp_rresp,
input logic axi_hp_rvalid,
output logic [127:0] axi_hp_wdata,
output logic axi_hp_wlast,
input logic axi_hp_wready,
output logic [ 15:0] axi_hp_wstrb,
output logic axi_hp_wvalid,
// Ethernet DMA IRQs
output logic [3:0] eth_rx_irq,
output logic [3:0] eth_tx_irq,
// Misc.
output logic rx_rec_clk_out,
input logic [15:0] device_id,
output logic [31:0] port_info_0,
output logic [31:0] port_info_1,
output logic [31:0] port_info_2,
output logic [31:0] port_info_3,
output logic [3:0] link_up,
output logic [3:0] activity
);
import PkgAxiLite::*;
`include "../../lib/axi4lite_sv/axi_lite.vh"
`include "../../lib/axi4s_sv/axi4s.vh"
//---------------------------------------------------------------------------
// AXI Interfaces
//---------------------------------------------------------------------------
localparam CHDR_USER_W = $clog2(CHDR_W/8);
localparam CPU_USER_W = $clog2(CPU_W/8)+1;
// AXI-Stream for RFNoC CHDR
AxiStreamIf #(.DATA_WIDTH(CHDR_W), .USER_WIDTH(CHDR_USER_W),
.TKEEP(0), .TUSER(0))
v2e[4] (bus_clk, bus_rst);
AxiStreamIf #(.DATA_WIDTH(CHDR_W), .USER_WIDTH(CHDR_USER_W),
.TKEEP(0), .TUSER(0))
e2v[4] (bus_clk, bus_rst);
// AXI-Lite register interface
AxiLiteIf #(.DATA_WIDTH(32), .ADDR_WIDTH(40))
s_axi (clk40, clk40_rst);
// AXI (Full) for DMA back to CPU memory
AxiIf #(.DATA_WIDTH(128), .ADDR_WIDTH(49))
axi_hp (clk40, clk40_rst);
logic [3:0][31:0] port_info;
//---------------------------------------------------------------------------
// Translate Signals to Interfaces
//---------------------------------------------------------------------------
always_comb begin
port_info_0 = port_info[0];
port_info_1 = port_info[1];
port_info_2 = port_info[2];
port_info_3 = port_info[3];
//---------------------------------
// s_axi
//---------------------------------
// Write channel
s_axi.awaddr[39:18] = 0;
s_axi.awaddr[17:0] = s_axi_awaddr[17:0]; // 256 KiB window
s_axi.awvalid = s_axi_awvalid;
s_axi_awready = s_axi.awready;
s_axi.wdata = s_axi_wdata[31:0];
s_axi.wstrb = s_axi_wstrb;
s_axi.wvalid = s_axi_wvalid;
s_axi_wready = s_axi.wready;
s_axi_bresp = s_axi.bresp[1:0];
s_axi_bvalid = s_axi.bvalid;
s_axi.bready = s_axi_bready;
// Read channel
s_axi.araddr[39:18] = 0;
s_axi.araddr[17:0] = s_axi_araddr[17:0]; // 256 KiB window
s_axi.arvalid = s_axi_arvalid;
s_axi_arready = s_axi.arready;
s_axi_rdata[31:0] = s_axi.rdata;
s_axi_rresp = s_axi.rresp[1:0];
s_axi_rvalid = s_axi.rvalid;
s_axi.rready = s_axi_rready;
//---------------------------------
// axi_hp
//---------------------------------
// Write channel
axi_hp_awaddr = axi_hp.awaddr;
axi_hp_awburst = axi_hp.awburst;
axi_hp_awcache = axi_hp.awcache;
axi_hp_awlen = axi_hp.awlen;
axi_hp_awsize = axi_hp.awsize;
axi_hp_awlock = axi_hp.awlock;
axi_hp_awprot = axi_hp.awprot;
axi_hp_awqos = axi_hp.awqos;
axi_hp_awvalid = axi_hp.awvalid;
axi_hp.awready = axi_hp_awready;
axi_hp_wdata = axi_hp.wdata;
axi_hp_wstrb = axi_hp.wstrb;
axi_hp_wlast = axi_hp.wlast;
axi_hp_wvalid = axi_hp.wvalid;
axi_hp.wready = axi_hp_wready;
axi_hp.bresp[1:0] = axi_hp_bresp;
axi_hp.bvalid = axi_hp_bvalid;
axi_hp_bready = axi_hp.bready;
// Read channel
axi_hp_araddr = axi_hp.araddr;
axi_hp_arburst = axi_hp.arburst;
axi_hp_arcache = axi_hp.arcache;
axi_hp_arlen = axi_hp.arlen;
axi_hp_arsize = axi_hp.arsize;
axi_hp_arlock = axi_hp.arlock;
axi_hp_arprot = axi_hp.arprot;
axi_hp_arqos = axi_hp.arqos;
axi_hp_arvalid = axi_hp.arvalid;
axi_hp.arready = axi_hp_arready;
axi_hp.rdata = axi_hp_rdata;
axi_hp.rresp[1:0] = axi_hp_rresp;
axi_hp.rlast = axi_hp_rlast;
axi_hp.rvalid = axi_hp_rvalid;
axi_hp_rready = axi_hp.rready;
//---------------------------------
// CHDR Links
//---------------------------------
e2v_tdata[1*CHDR_W-1:0*CHDR_W] = e2v[0].tdata;
e2v_tlast[0] = e2v[0].tlast;
e2v_tvalid[0] = e2v[0].tvalid;
e2v[0].tready = e2v_tready[0];
e2v_tdata[2*CHDR_W-1:1*CHDR_W] = e2v[1].tdata;
e2v_tlast[1] = e2v[1].tlast;
e2v_tvalid[1] = e2v[1].tvalid;
e2v[1].tready = e2v_tready[1];
e2v_tdata[3*CHDR_W-1:2*CHDR_W] = e2v[2].tdata;
e2v_tlast[2] = e2v[2].tlast;
e2v_tvalid[2] = e2v[2].tvalid;
e2v[2].tready = e2v_tready[2];
e2v_tdata[4*CHDR_W-1:3*CHDR_W] = e2v[3].tdata;
e2v_tlast[3] = e2v[3].tlast;
e2v_tvalid[3] = e2v[3].tvalid;
e2v[3].tready = e2v_tready[3];
v2e[0].tdata = v2e_tdata[1*CHDR_W-1:0*CHDR_W];
v2e[0].tlast = v2e_tlast[0];
v2e[0].tvalid = v2e_tvalid[0];
v2e_tready[0] = v2e[0].tready;
v2e[1].tdata = v2e_tdata[2*CHDR_W-1:1*CHDR_W];
v2e[1].tlast = v2e_tlast[1];
v2e[1].tvalid = v2e_tvalid[1];
v2e_tready[1] = v2e[1].tready;
v2e[2].tdata = v2e_tdata[3*CHDR_W-1:2*CHDR_W];
v2e[2].tlast = v2e_tlast[2];
v2e[2].tvalid = v2e_tvalid[2];
v2e_tready[2] = v2e[2].tready;
v2e[3].tdata = v2e_tdata[4*CHDR_W-1:3*CHDR_W];
v2e[3].tlast = v2e_tlast[3];
v2e[3].tvalid = v2e_tvalid[3];
v2e_tready[3] = v2e[3].tready;
end
x4xx_qsfp_wrapper #(
.PROTOCOL ({ PROTOCOL3, PROTOCOL2, PROTOCOL1, PROTOCOL0 }),
.CPU_W (CPU_W),
.CHDR_W (CHDR_W),
.BYTE_MTU (BYTE_MTU),
.PORTNUM (PORTNUM)
) x4xx_qsfp_wrapper_i (
.areset (areset),
.refclk_p (refclk_p),
.refclk_n (refclk_n),
.bus_rst (bus_rst),
.clk40_rst (clk40_rst),
.clk100 (clk100),
.bus_clk (bus_clk),
.s_axi (s_axi),
.tx_p (tx_p),
.tx_n (tx_n),
.rx_p (rx_p),
.rx_n (rx_n),
.e2v (e2v),
.v2e (v2e),
.axi_hp (axi_hp),
.eth_tx_irq (eth_tx_irq),
.eth_rx_irq (eth_rx_irq),
.device_id (device_id),
.rx_rec_clk_out (rx_rec_clk_out),
.port_info (port_info),
.link_up (link_up),
.activity (activity)
);
endmodule
|