1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
|
//
// Copyright 2021 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: mb_cpld
//
// Description:
//
// Top level file for the X4xx motherboard CPLD.
//
// Parameters:
//
// SIMULATION : Set to 1 to speed up simulation.
//
`default_nettype none
module mb_cpld #(
parameter SIMULATION = 0
) (
//---------------------------------------------------------------------------
// Clocking
//---------------------------------------------------------------------------
// CPLD's PLL reference clock (differential input; abbreviation: pclk)
input wire PLL_REF_CLK,
// Reliable clock (100 MHz; differential input)
input wire CLK_100,
//---------------------------------------------------------------------------
// Power Supplies
//---------------------------------------------------------------------------
// Power supply clocks
output wire PWR_SUPPLY_CLK_CORE,
output wire PWR_SUPPLY_CLK_DDR4_S,
output wire PWR_SUPPLY_CLK_DDR4_N,
output wire PWR_SUPPLY_CLK_0P9V,
output wire PWR_SUPPLY_CLK_1P8V,
output wire PWR_SUPPLY_CLK_2P5V,
output wire PWR_SUPPLY_CLK_3P3V,
output wire PWR_SUPPLY_CLK_3P6V,
// Power supply control
output wire PWR_EN_5V_OSC_100,
output wire PWR_EN_5V_OSC_122_88,
output wire IPASS_POWER_DISABLE,
input wire [1:0] IPASS_POWER_EN_FAULT,
//---------------------------------------------------------------------------
// Interfaces from/to RFSoC
//---------------------------------------------------------------------------
// PL SPI slave interface
input wire PL_CPLD_SCLK,
input wire PL_CPLD_MOSI,
output reg PL_CPLD_MISO,
input wire [1:0] PL_CPLD_CS_N,
// IRQ to PL
output wire PL_CPLD_IRQ,
// PS SPI slave interface
// Chip Selects:
// PS_CPLD_CS_N(2:0) -> binary encoded chip select
// PS_CPLD_CS_N(3) -> chip select "enable"
input wire PS_CPLD_SCLK,
input wire PS_CPLD_MOSI,
output wire PS_CPLD_MISO,
input wire [3:0] PS_CPLD_CS_N,
//---------------------------------------------------------------------------
// PL Interfaces to/from Motherboard
//---------------------------------------------------------------------------
// Clocking AUX board SPI master interface
output wire CLK_DB_SCLK,
output wire CLK_DB_MOSI,
input wire CLK_DB_MISO,
output wire CLK_DB_CS_N,
// QSFP LEDs
// Port 0
output wire [3:0] QSFP0_LED_ACTIVE,
output wire [3:0] QSFP0_LED_LINK,
// Port 1
output wire [3:0] QSFP1_LED_ACTIVE,
output wire [3:0] QSFP1_LED_LINK,
// Daughterboard control interface
// 1 -> DB1 / 0 -> DB0
output reg [1:0] DB_CTRL_SCLK,
output reg [1:0] DB_CTRL_MOSI,
input wire [1:0] DB_CTRL_MISO,
output reg [1:0] DB_CTRL_CS_N,
output wire [1:0] DB_REF_CLK,
output wire [1:0] DB_ARST,
// Daughterboards' JTAG master interfaces.
// 1 -> DB1 / 0 -> DB0
output wire [1:0] DB_JTAG_TCK,
output wire [1:0] DB_JTAG_TDI, // from CPLD to DB
input wire [1:0] DB_JTAG_TDO, // from DB to CPLD
output wire [1:0] DB_JTAG_TMS,
//---------------------------------------------------------------------------
// PS Interfaces to/from Motherboard
//---------------------------------------------------------------------------
// LMK04832 SPI master interface
output wire LMK32_SCLK,
output wire LMK32_MOSI,
input wire LMK32_MISO,
output wire LMK32_CS_N,
// TPM 2.0 SPI master interface
// Note: TPM is not currently supported
output wire TPM_SCLK,
output wire TPM_MOSI,
input wire TPM_MISO,
output wire TPM_CS_N,
// Phase DAC SPI master interface
output wire PHASE_DAC_SCLK,
output wire PHASE_DAC_MOSI,
output wire PHASE_DAC_CS_N,
// DIO direction control
output wire [11:0] DIO_DIRECTION_A,
output wire [11:0] DIO_DIRECTION_B,
// Daughterboard calibration EEPROM SPI
// 1 -> DB1 / 0 -> DB0
output wire [1:0] DB_CALEEPROM_SCLK,
output wire [1:0] DB_CALEEPROM_MOSI,
input wire [1:0] DB_CALEEPROM_MISO,
output wire [1:0] DB_CALEEPROM_CS_N,
//---------------------------------------------------------------------------
// Miscellaneous
//---------------------------------------------------------------------------
// This signal enables the 1.8 V and 3.3 V power supply clocks.
output wire PS_CLK_ON_CPLD,
// iPASS control interface
input wire [1:0] IPASS_PRESENT_N,
inout wire [1:0] IPASS_SCL,
inout wire [1:0] IPASS_SDA,
// PCIe reset to FPGA
output wire PCIE_RESET,
// TPM reset
output wire TPM_RESET_n
);
// SPI masters (spi_top) are limited to 64 bit transmission length
`define SPI_MAX_CHAR_64
`include "../../../lib/rfnoc/core/ctrlport.vh"
`include "regmap/mb_cpld_ps_regmap_utils.vh"
`include "regmap/mb_cpld_pl_regmap_utils.vh"
//---------------------------------------------------------------------------
// Clocks and Resets
//---------------------------------------------------------------------------
wire clk40, clk50, clk250;
wire pll_ref_clk_int;
wire reset_clk50;
wire reset_clk40;
wire power_on_reset_clk100;
wire [0:0] pll_locked_async;
wire [0:0] pll_locked_clk50;
wire [0:0] pll_locked_clk40;
wire pll_ref_clk_en_clk50;
wire pll_ref_clk_en_pclk;
reset_generator reliable_reset_gen_inst (
.clk (CLK_100),
.power_on_reset (power_on_reset_clk100)
);
// Divide reliable clock by 2 since the design is not capable of running at
// 100 MHz. Multiple by 2.5 to get a fast clock to handle PS SPI chip select
// decoding.
pll pll_inst (
.inclk0 (CLK_100),
.c0 (clk50),
.c1 (clk250),
.c2 (clk40),
.locked (pll_locked_async)
);
// Bring pll_ref_clk enable signal to the same clock domain.
synchronizer #(
.WIDTH (1),
.STAGES (2),
.INITIAL_VAL (1'b0),
.FALSE_PATH_TO_IN (1)
) pll_ref_clk_en_sync (
.clk (PLL_REF_CLK),
.rst (1'b0),
.in (pll_ref_clk_en_clk50),
.out (pll_ref_clk_en_pclk)
);
// Enable clock using ALTCLKCTRL IP.
clkctrl pll_ref_clk_ctrl_inst (
.inclk (PLL_REF_CLK),
.ena (pll_ref_clk_en_pclk),
.outclk (pll_ref_clk_int)
);
// Use locked signal as reset for clk50 and clk40 clock domain
synchronizer #(
.WIDTH (1),
.STAGES (2),
.INITIAL_VAL (1'b0),
.FALSE_PATH_TO_IN (1)
) clk50_reset_sync (
.clk (clk50),
.rst (1'b0),
.in (pll_locked_async),
.out (pll_locked_clk50)
);
assign reset_clk50 = ~pll_locked_clk50;
synchronizer #(
.WIDTH (1),
.STAGES (2),
.INITIAL_VAL (1'b0),
.FALSE_PATH_TO_IN (1)
) clk40_reset_sync (
.clk (clk40),
.rst (1'b0),
.in (pll_locked_async),
.out (pll_locked_clk40)
);
assign reset_clk40 = ~pll_locked_clk40;
//---------------------------------------------------------------------------
// Power Supply Clock
//---------------------------------------------------------------------------
// Frequency definitions
localparam SOUCE_CLOCK_FREQUENCY = 100_000_000;
localparam TARGET_FREQUENCY_350k = 350_000;
localparam TARGET_FREQUENCY_450k = 450_000;
localparam TARGET_FREQUENCY_500k = 500_000;
localparam TARGET_FREQUENCY_600k = 600_000;
localparam TARGET_FREQUENCY_800k = 800_000;
localparam TARGET_FREQUENCY_1M = 1_000_000;
pwr_supply_clk_gen #(
.SOURCE_CLK_FREQ (SOUCE_CLOCK_FREQUENCY),
.TARGET_CLK_FREQ (TARGET_FREQUENCY_350k)
) freq_gen_350k (
.clk (CLK_100),
.rst (power_on_reset_clk100),
.pwr_supply_clk (PWR_SUPPLY_CLK_0P9V)
);
wire pwr_supply_clk_450k;
pwr_supply_clk_gen #(
.SOURCE_CLK_FREQ (SOUCE_CLOCK_FREQUENCY),
.TARGET_CLK_FREQ (TARGET_FREQUENCY_450k)
) freq_gen_450k (
.clk (CLK_100),
.rst (power_on_reset_clk100),
.pwr_supply_clk (pwr_supply_clk_450k)
);
assign PWR_SUPPLY_CLK_DDR4_S = pwr_supply_clk_450k;
assign PWR_SUPPLY_CLK_DDR4_N = pwr_supply_clk_450k;
pwr_supply_clk_gen #(
.SOURCE_CLK_FREQ (SOUCE_CLOCK_FREQUENCY),
.TARGET_CLK_FREQ (TARGET_FREQUENCY_500k)
) freq_gen_500k (
.clk (CLK_100),
.rst (power_on_reset_clk100),
.pwr_supply_clk (PWR_SUPPLY_CLK_CORE)
);
pwr_supply_clk_gen #(
.SOURCE_CLK_FREQ (SOUCE_CLOCK_FREQUENCY),
.TARGET_CLK_FREQ (TARGET_FREQUENCY_600k)
) freq_gen_600k (
.clk (CLK_100),
.rst (power_on_reset_clk100),
.pwr_supply_clk (PWR_SUPPLY_CLK_1P8V)
);
pwr_supply_clk_gen #(
.SOURCE_CLK_FREQ (SOUCE_CLOCK_FREQUENCY),
.TARGET_CLK_FREQ (TARGET_FREQUENCY_800k)
) freq_gen_800k (
.clk (CLK_100),
.rst (power_on_reset_clk100),
.pwr_supply_clk (PWR_SUPPLY_CLK_2P5V)
);
wire pwr_supply_clk_1M;
pwr_supply_clk_gen #(
.SOURCE_CLK_FREQ (SOUCE_CLOCK_FREQUENCY),
.TARGET_CLK_FREQ (TARGET_FREQUENCY_1M)
) freq_gen_1M (
.clk (CLK_100),
.rst (power_on_reset_clk100),
.pwr_supply_clk (pwr_supply_clk_1M)
);
assign PWR_SUPPLY_CLK_3P3V = pwr_supply_clk_1M;
assign PWR_SUPPLY_CLK_3P6V = pwr_supply_clk_1M;
//---------------------------------------------------------------------------
// PL Interfaces
//---------------------------------------------------------------------------
wire [1:0] db_clk_enable;
wire [1:0] db_reset;
wire [1:0] ipass_cable_present;
// Clocks and reset
oddr db0_clk_out (
.outclock (clk50),
.din ({1'b0, db_clk_enable[0]}),
.pad_out (DB_REF_CLK[0]),
.aclr (reset_clk50)
);
oddr db1_clk_out (
.outclock (clk50),
.din ({1'b0, db_clk_enable[1]}),
.pad_out (DB_REF_CLK[1]),
.aclr (reset_clk50)
);
assign DB_ARST[0] = db_reset[0];
assign DB_ARST[1] = db_reset[1];
// PL SPI FPGA -> DB CPLD
reg mb_cpld_sclk, mb_cpld_mosi, mb_cpld_cs_n;
wire mb_cpld_miso;
// PL SPI chip select decoding
localparam PL_CS_MB_CPLD = 2'b00;
localparam PL_CS_DB0 = 2'b10;
localparam PL_CS_DB1 = 2'b01;
localparam PL_CS_IDLE = 2'b11;
// PL SPI registers do not have a separate reset.
// SW is expected to properly setup the DBs before issuing SPI transactions.
always @(posedge pll_ref_clk_int) begin : to_db
// Default chip selects
DB_CTRL_CS_N[0] <= 1'b1;
DB_CTRL_CS_N[1] <= 1'b1;
mb_cpld_cs_n <= 1'b1;
// DB 0
DB_CTRL_SCLK[0] <= PL_CPLD_SCLK;
DB_CTRL_MOSI[0] <= PL_CPLD_MOSI;
if (PL_CPLD_CS_N == PL_CS_DB0) begin
DB_CTRL_CS_N[0] <= 1'b0;
end
// DB 1
DB_CTRL_SCLK[1] <= PL_CPLD_SCLK;
DB_CTRL_MOSI[1] <= PL_CPLD_MOSI;
if (PL_CPLD_CS_N == PL_CS_DB1) begin
DB_CTRL_CS_N[1] <= 1'b0;
end
// MB CPLD
mb_cpld_sclk <= PL_CPLD_SCLK;
mb_cpld_mosi <= PL_CPLD_MOSI;
if (PL_CPLD_CS_N == PL_CS_MB_CPLD) begin
mb_cpld_cs_n <= 1'b0;
end
end
// SPI DB CPLD -> FPGA
always @(posedge pll_ref_clk_int) begin : from_db
case (PL_CPLD_CS_N)
PL_CS_MB_CPLD : PL_CPLD_MISO <= mb_cpld_miso; // MB CPLD
PL_CS_DB1 : PL_CPLD_MISO <= DB_CTRL_MISO[1]; // DB 1
PL_CS_DB0 : PL_CPLD_MISO <= DB_CTRL_MISO[0]; // DB 0
PL_CS_IDLE : PL_CPLD_MISO <= 1'bz; // Inactive
endcase
end
// Local PL SPI target
wire [19:0] pl_ctrlport_req_addr;
wire [31:0] pl_ctrlport_req_data;
wire pl_ctrlport_req_rd;
wire pl_ctrlport_req_wr;
wire pl_ctrlport_resp_ack;
wire [31:0] pl_ctrlport_resp_data;
wire [ 1:0] pl_ctrlport_resp_status;
spi_slave_to_ctrlport_master #(
.CLK_FREQUENCY (50_000_000),
.SPI_FREQUENCY (10_666_667)
) pl_spi_endpoint (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.m_ctrlport_req_wr (pl_ctrlport_req_wr),
.m_ctrlport_req_rd (pl_ctrlport_req_rd),
.m_ctrlport_req_addr (pl_ctrlport_req_addr),
.m_ctrlport_req_data (pl_ctrlport_req_data),
.m_ctrlport_resp_ack (pl_ctrlport_resp_ack),
.m_ctrlport_resp_status (pl_ctrlport_resp_status),
.m_ctrlport_resp_data (pl_ctrlport_resp_data),
.sclk (mb_cpld_sclk),
.cs_n (mb_cpld_cs_n),
.mosi (mb_cpld_mosi),
.miso (mb_cpld_miso)
);
// Split up the PL control port
wire [19:0] pl_regs_ctrlport_req_addr;
wire [31:0] pl_regs_ctrlport_req_data;
wire pl_regs_ctrlport_req_rd;
wire pl_regs_ctrlport_req_wr;
wire pl_regs_ctrlport_resp_ack;
wire [31:0] pl_regs_ctrlport_resp_data;
wire [ 1:0] pl_regs_ctrlport_resp_status;
wire [19:0] pl_term_ctrlport_req_addr;
wire [31:0] pl_term_ctrlport_req_data;
wire pl_term_ctrlport_req_rd;
wire pl_term_ctrlport_req_wr;
wire pl_term_ctrlport_resp_ack;
wire [31:0] pl_term_ctrlport_resp_data;
wire [ 1:0] pl_term_ctrlport_resp_status;
wire pl_jtag0_ctrlport_req_rd;
wire pl_jtag0_ctrlport_req_wr;
wire pl_jtag0_ctrlport_resp_ack;
wire [31:0] pl_jtag0_ctrlport_resp_data;
wire [ 1:0] pl_jtag0_ctrlport_resp_status;
wire [19:0] pl_jtag0_ctrlport_req_addr;
wire [31:0] pl_jtag0_ctrlport_req_data;
wire [19:0] pl_jtag1_ctrlport_req_addr;
wire [31:0] pl_jtag1_ctrlport_req_data;
wire pl_jtag1_ctrlport_req_rd;
wire pl_jtag1_ctrlport_req_wr;
wire pl_jtag1_ctrlport_resp_ack;
wire [31:0] pl_jtag1_ctrlport_resp_data;
wire [1:0] pl_jtag1_ctrlport_resp_status;
ctrlport_splitter #(
.NUM_SLAVES (4)
) pl_ctrlport_splitter (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (pl_ctrlport_req_wr),
.s_ctrlport_req_rd (pl_ctrlport_req_rd),
.s_ctrlport_req_addr (pl_ctrlport_req_addr),
.s_ctrlport_req_data (pl_ctrlport_req_data),
.s_ctrlport_req_byte_en (),
.s_ctrlport_req_has_time (),
.s_ctrlport_req_time (),
.s_ctrlport_resp_ack (pl_ctrlport_resp_ack),
.s_ctrlport_resp_status (pl_ctrlport_resp_status),
.s_ctrlport_resp_data (pl_ctrlport_resp_data),
.m_ctrlport_req_wr ({pl_regs_ctrlport_req_wr, pl_term_ctrlport_req_wr, pl_jtag0_ctrlport_req_wr, pl_jtag1_ctrlport_req_wr}),
.m_ctrlport_req_rd ({pl_regs_ctrlport_req_rd, pl_term_ctrlport_req_rd, pl_jtag0_ctrlport_req_rd, pl_jtag1_ctrlport_req_rd}),
.m_ctrlport_req_addr ({pl_regs_ctrlport_req_addr, pl_term_ctrlport_req_addr, pl_jtag0_ctrlport_req_addr, pl_jtag1_ctrlport_req_addr}),
.m_ctrlport_req_data ({pl_regs_ctrlport_req_data, pl_term_ctrlport_req_data, pl_jtag0_ctrlport_req_data, pl_jtag1_ctrlport_req_data}),
.m_ctrlport_req_byte_en (),
.m_ctrlport_req_has_time (),
.m_ctrlport_req_time (),
.m_ctrlport_resp_ack ({pl_regs_ctrlport_resp_ack, pl_term_ctrlport_resp_ack, pl_jtag0_ctrlport_resp_ack, pl_jtag1_ctrlport_resp_ack}),
.m_ctrlport_resp_status ({pl_regs_ctrlport_resp_status, pl_term_ctrlport_resp_status, pl_jtag0_ctrlport_resp_status, pl_jtag1_ctrlport_resp_status}),
.m_ctrlport_resp_data ({pl_regs_ctrlport_resp_data, pl_term_ctrlport_resp_data, pl_jtag0_ctrlport_resp_data, pl_jtag1_ctrlport_resp_data})
);
pl_cpld_regs #(
.BASE_ADDRESS (PL_REGISTERS)
) pl_regs (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (pl_regs_ctrlport_req_wr),
.s_ctrlport_req_rd (pl_regs_ctrlport_req_rd),
.s_ctrlport_req_addr (pl_regs_ctrlport_req_addr),
.s_ctrlport_req_data (pl_regs_ctrlport_req_data),
.s_ctrlport_resp_ack (pl_regs_ctrlport_resp_ack),
.s_ctrlport_resp_status (pl_regs_ctrlport_resp_status),
.s_ctrlport_resp_data (pl_regs_ctrlport_resp_data),
.qsfp0_led_active (QSFP0_LED_ACTIVE),
.qsfp0_led_link (QSFP0_LED_LINK),
.qsfp1_led_active (QSFP1_LED_ACTIVE),
.qsfp1_led_link (QSFP1_LED_LINK),
.ipass_cable_present (ipass_cable_present)
);
ctrlport_to_jtag #(
.BASE_ADDRESS (JTAG_DB0),
.DEFAULT_PRESCALAR (1)
) db0_jtag (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (pl_jtag0_ctrlport_req_wr),
.s_ctrlport_req_rd (pl_jtag0_ctrlport_req_rd),
.s_ctrlport_req_addr (pl_jtag0_ctrlport_req_addr),
.s_ctrlport_req_data (pl_jtag0_ctrlport_req_data),
.s_ctrlport_resp_ack (pl_jtag0_ctrlport_resp_ack),
.s_ctrlport_resp_status (pl_jtag0_ctrlport_resp_status),
.s_ctrlport_resp_data (pl_jtag0_ctrlport_resp_data),
.tck (DB_JTAG_TCK[0]),
.tdi (DB_JTAG_TDI[0]),
.tdo (DB_JTAG_TDO[0]),
.tms (DB_JTAG_TMS[0])
);
ctrlport_to_jtag #(
.BASE_ADDRESS (JTAG_DB1),
.DEFAULT_PRESCALAR (1)
) db1_jtag (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (pl_jtag1_ctrlport_req_wr),
.s_ctrlport_req_rd (pl_jtag1_ctrlport_req_rd),
.s_ctrlport_req_addr (pl_jtag1_ctrlport_req_addr),
.s_ctrlport_req_data (pl_jtag1_ctrlport_req_data),
.s_ctrlport_resp_ack (pl_jtag1_ctrlport_resp_ack),
.s_ctrlport_resp_status (pl_jtag1_ctrlport_resp_status),
.s_ctrlport_resp_data (pl_jtag1_ctrlport_resp_data),
.tck (DB_JTAG_TCK[1]),
.tdi (DB_JTAG_TDI[1]),
.tdo (DB_JTAG_TDO[1]),
.tms (DB_JTAG_TMS[1])
);
// Termination of ctrlport request
ctrlport_terminator #(
.START_ADDRESS (JTAG_DB1 + JTAG_DB1_SIZE),
.LAST_ADDRESS (2**CTRLPORT_ADDR_W-1)
) pl_terminator (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (pl_term_ctrlport_req_wr),
.s_ctrlport_req_rd (pl_term_ctrlport_req_rd),
.s_ctrlport_req_addr (pl_term_ctrlport_req_addr),
.s_ctrlport_req_data (pl_term_ctrlport_req_data),
.s_ctrlport_resp_ack (pl_term_ctrlport_resp_ack),
.s_ctrlport_resp_status (pl_term_ctrlport_resp_status),
.s_ctrlport_resp_data (pl_term_ctrlport_resp_data)
);
//---------------------------------------------------------------------------
// PS Interfaces
//---------------------------------------------------------------------------
// Local PS SPI target
wire [19:0] ps_ctrlport_req_addr;
wire [31:0] ps_ctrlport_req_data;
wire ps_ctrlport_req_rd;
wire ps_ctrlport_req_wr;
wire ps_ctrlport_resp_ack;
wire [31:0] ps_ctrlport_resp_data;
wire [ 1:0] ps_ctrlport_resp_status;
wire ps_spi_endpoint_sclk;
wire ps_spi_endpoint_mosi;
wire ps_spi_endpoint_miso;
wire ps_spi_endpoint_cs_n;
spi_slave_to_ctrlport_master #(
.CLK_FREQUENCY (50_000_000),
.SPI_FREQUENCY (5_000_000)
) ps_spi_endpoint (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.m_ctrlport_req_wr (ps_ctrlport_req_wr),
.m_ctrlport_req_rd (ps_ctrlport_req_rd),
.m_ctrlport_req_addr (ps_ctrlport_req_addr),
.m_ctrlport_req_data (ps_ctrlport_req_data),
.m_ctrlport_resp_ack (ps_ctrlport_resp_ack),
.m_ctrlport_resp_status (ps_ctrlport_resp_status),
.m_ctrlport_resp_data (ps_ctrlport_resp_data),
.sclk (ps_spi_endpoint_sclk),
.cs_n (ps_spi_endpoint_cs_n),
.mosi (ps_spi_endpoint_mosi),
.miso (ps_spi_endpoint_miso)
);
// The PS SPI chip select signals are binary encoded.
//
// The internal SPI slaves as well as external slaves like the LMK04832
// trigger actions or resets based on edges of the chip select signal.
// Therefore this implementation has to avoid glitches on the chip select
// signal although the SPI protocol is synchronous.
//
// The chip signals are double synchronized to make sure there is no
// meta-stability. Due to different traces lengths there is no guarantee for
// the chip select signals to change at the same time. To overcome this issue
// register stage 2 and 3 are compared. Only in case of matching values the
// change is propagated to the slaves' chip select lines. Once the IDLE state
// (all ones) is detected in register stage 2 the slaves' chip select lines
// will be deasserted.
// Input sync registers (3 stages)
wire [3:0] ps_cpld_cs_n_shift2; // Resolving meta-stability, reset on IDLE
reg [3:0] ps_cpld_cs_n_shift3 = {4 {1'b1}}; // Stable state detection
synchronizer #(
.WIDTH (4),
.STAGES (2),
.INITIAL_VAL (4'b1111),
.FALSE_PATH_TO_IN (0)
) ps_spi_input_sync_inst (
.clk (clk250),
.rst (1'b0),
.in (PS_CPLD_CS_N),
.out (ps_cpld_cs_n_shift2)
);
always @(posedge clk250) begin
ps_cpld_cs_n_shift3 <= ps_cpld_cs_n_shift2;
end
// SPI binary decoding
reg [SPI_ENDPOINT_SIZE-2:0] ps_spi_cs_n_decoded = {SPI_ENDPOINT_SIZE-1 {1'b1}};
always @(posedge clk250) begin
// reset in case of IDLE state
if (ps_cpld_cs_n_shift2[2:0] == PS_CS_IDLE) begin
ps_spi_cs_n_decoded <= {SPI_ENDPOINT_SIZE-1 {1'b1}};
// only apply changes when stable state is detected
end else if (ps_cpld_cs_n_shift3[2:0] == ps_cpld_cs_n_shift2[2:0]) begin
ps_spi_cs_n_decoded[PS_CS_MB_CPLD] <= ps_cpld_cs_n_shift3[2:0] != PS_CS_MB_CPLD;
ps_spi_cs_n_decoded[PS_CS_LMK32] <= ps_cpld_cs_n_shift3[2:0] != PS_CS_LMK32;
ps_spi_cs_n_decoded[PS_CS_TPM] <= ps_cpld_cs_n_shift3[2:0] != PS_CS_TPM;
ps_spi_cs_n_decoded[PS_CS_PHASE_DAC] <= ps_cpld_cs_n_shift3[2:0] != PS_CS_PHASE_DAC;
ps_spi_cs_n_decoded[PS_CS_DB0_CAL_EEPROM] <= ps_cpld_cs_n_shift3[2:0] != PS_CS_DB0_CAL_EEPROM;
ps_spi_cs_n_decoded[PS_CS_DB1_CAL_EEPROM] <= ps_cpld_cs_n_shift3[2:0] != PS_CS_DB1_CAL_EEPROM;
ps_spi_cs_n_decoded[PS_CS_CLK_AUX_DB] <= ps_cpld_cs_n_shift3[2:0] != PS_CS_CLK_AUX_DB;
end
end
// Local SPI slave
assign ps_spi_endpoint_sclk = PS_CPLD_SCLK;
assign ps_spi_endpoint_mosi = PS_CPLD_MOSI;
assign ps_spi_endpoint_cs_n = ps_spi_cs_n_decoded[PS_CS_MB_CPLD];
// LMK04832 SPI signals
assign LMK32_SCLK = PS_CPLD_SCLK;
assign LMK32_MOSI = PS_CPLD_MOSI;
assign LMK32_CS_N = ps_spi_cs_n_decoded[PS_CS_LMK32];
// TPM SPI signals
// Note: TPM is not currently supported
assign TPM_SCLK = PS_CPLD_SCLK;
assign TPM_MOSI = PS_CPLD_MOSI;
assign TPM_CS_N = ps_spi_cs_n_decoded[PS_CS_TPM];
// Phase DAC SPI signals
assign PHASE_DAC_SCLK = PS_CPLD_SCLK;
assign PHASE_DAC_MOSI = PS_CPLD_MOSI;
assign PHASE_DAC_CS_N = ps_spi_cs_n_decoded[PS_CS_PHASE_DAC];
// DB EEPROM 0 SPI signals
assign DB_CALEEPROM_SCLK[0] = PS_CPLD_SCLK;
assign DB_CALEEPROM_MOSI[0] = PS_CPLD_MOSI;
assign DB_CALEEPROM_CS_N[0] = ps_spi_cs_n_decoded[PS_CS_DB0_CAL_EEPROM];
// DB EEPROM 1 SPI signals
assign DB_CALEEPROM_SCLK[1] = PS_CPLD_SCLK;
assign DB_CALEEPROM_MOSI[1] = PS_CPLD_MOSI;
assign DB_CALEEPROM_CS_N[1] = ps_spi_cs_n_decoded[PS_CS_DB1_CAL_EEPROM];
// CLK AUX DB SPI signals
assign CLK_DB_SCLK = PS_CPLD_SCLK;
assign CLK_DB_MOSI = PS_CPLD_MOSI;
assign CLK_DB_CS_N = ps_spi_cs_n_decoded[PS_CS_CLK_AUX_DB];
// Combine SPI responses based on inputs only as this path is captured
// synchronously to PS_CPLD_SCLK by the SPI master.
assign PS_CPLD_MISO = (PS_CPLD_CS_N[2:0] == PS_CS_MB_CPLD) ? ps_spi_endpoint_miso :
(PS_CPLD_CS_N[2:0] == PS_CS_LMK32) ? LMK32_MISO :
(PS_CPLD_CS_N[2:0] == PS_CS_TPM) ? TPM_MISO :
(PS_CPLD_CS_N[2:0] == PS_CS_DB0_CAL_EEPROM) ? DB_CALEEPROM_MISO[0] :
(PS_CPLD_CS_N[2:0] == PS_CS_DB1_CAL_EEPROM) ? DB_CALEEPROM_MISO[1] :
(PS_CPLD_CS_N[2:0] == PS_CS_CLK_AUX_DB) ? CLK_DB_MISO :
1'bz; // Default case and PHASE_DAC
// Split up the PS control port
wire [19:0] ps_regs_ctrlport_req_addr;
wire [31:0] ps_regs_ctrlport_req_data;
wire ps_regs_ctrlport_req_rd;
wire ps_regs_ctrlport_req_wr;
wire ps_regs_ctrlport_resp_ack;
wire [31:0] ps_regs_ctrlport_resp_data;
wire [ 1:0] ps_regs_ctrlport_resp_status;
wire [19:0] ps_term_ctrlport_req_addr;
wire [31:0] ps_term_ctrlport_req_data;
wire ps_term_ctrlport_req_rd;
wire ps_term_ctrlport_req_wr;
wire ps_term_ctrlport_resp_ack;
wire [31:0] ps_term_ctrlport_resp_data;
wire [ 1:0] ps_term_ctrlport_resp_status;
wire [19:0] ps_reconfig_ctrlport_req_addr;
wire [31:0] ps_reconfig_ctrlport_req_data;
wire ps_reconfig_ctrlport_req_rd;
wire ps_reconfig_ctrlport_req_wr;
wire ps_reconfig_ctrlport_resp_ack;
wire [31:0] ps_reconfig_ctrlport_resp_data;
wire [ 1:0] ps_reconfig_ctrlport_resp_status;
wire [19:0] ps_power_ctrlport_req_addr;
wire [31:0] ps_power_ctrlport_req_data;
wire ps_power_ctrlport_req_rd;
wire ps_power_ctrlport_req_wr;
wire ps_power_ctrlport_resp_ack;
wire [31:0] ps_power_ctrlport_resp_data;
wire [ 1:0] ps_power_ctrlport_resp_status;
ctrlport_splitter #(
.NUM_SLAVES (4)
) ps_ctrlport_splitter (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (ps_ctrlport_req_wr),
.s_ctrlport_req_rd (ps_ctrlport_req_rd),
.s_ctrlport_req_addr (ps_ctrlport_req_addr),
.s_ctrlport_req_data (ps_ctrlport_req_data),
.s_ctrlport_req_byte_en (),
.s_ctrlport_req_has_time (),
.s_ctrlport_req_time (),
.s_ctrlport_resp_ack (ps_ctrlport_resp_ack),
.s_ctrlport_resp_status (ps_ctrlport_resp_status),
.s_ctrlport_resp_data (ps_ctrlport_resp_data),
.m_ctrlport_req_wr ({ps_power_ctrlport_req_wr, ps_regs_ctrlport_req_wr, ps_term_ctrlport_req_wr, ps_reconfig_ctrlport_req_wr}),
.m_ctrlport_req_rd ({ps_power_ctrlport_req_rd, ps_regs_ctrlport_req_rd, ps_term_ctrlport_req_rd, ps_reconfig_ctrlport_req_rd}),
.m_ctrlport_req_addr ({ps_power_ctrlport_req_addr, ps_regs_ctrlport_req_addr, ps_term_ctrlport_req_addr, ps_reconfig_ctrlport_req_addr}),
.m_ctrlport_req_data ({ps_power_ctrlport_req_data, ps_regs_ctrlport_req_data, ps_term_ctrlport_req_data, ps_reconfig_ctrlport_req_data}),
.m_ctrlport_req_byte_en (),
.m_ctrlport_req_has_time (),
.m_ctrlport_req_time (),
.m_ctrlport_resp_ack ({ps_power_ctrlport_resp_ack, ps_regs_ctrlport_resp_ack, ps_term_ctrlport_resp_ack, ps_reconfig_ctrlport_resp_ack}),
.m_ctrlport_resp_status ({ps_power_ctrlport_resp_status, ps_regs_ctrlport_resp_status, ps_term_ctrlport_resp_status, ps_reconfig_ctrlport_resp_status}),
.m_ctrlport_resp_data ({ps_power_ctrlport_resp_data, ps_regs_ctrlport_resp_data, ps_term_ctrlport_resp_data, ps_reconfig_ctrlport_resp_data})
);
wire [39:0] serial_num_clk50;
wire cmi_ready_clk50;
wire cmi_other_side_detected_clk50;
ps_cpld_regs #(
.BASE_ADDRESS (PS_REGISTERS)
) ps_regs (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (ps_regs_ctrlport_req_wr),
.s_ctrlport_req_rd (ps_regs_ctrlport_req_rd),
.s_ctrlport_req_addr (ps_regs_ctrlport_req_addr),
.s_ctrlport_req_data (ps_regs_ctrlport_req_data),
.s_ctrlport_resp_ack (ps_regs_ctrlport_resp_ack),
.s_ctrlport_resp_status (ps_regs_ctrlport_resp_status),
.s_ctrlport_resp_data (ps_regs_ctrlport_resp_data),
.db_clk_enable (db_clk_enable),
.db_reset (db_reset),
.pll_ref_clk_enable (pll_ref_clk_en_clk50),
.dio_direction_a (DIO_DIRECTION_A),
.dio_direction_b (DIO_DIRECTION_B),
.serial_num (serial_num_clk50),
.cmi_ready (cmi_ready_clk50),
.cmi_other_side_detected (cmi_other_side_detected_clk50)
);
ps_power_regs #(
.BASE_ADDRESS (POWER_REGISTERS),
.NUM_ADDRESSES (POWER_REGISTERS_SIZE)
) ps_power_regs_inst (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (ps_power_ctrlport_req_wr),
.s_ctrlport_req_rd (ps_power_ctrlport_req_rd),
.s_ctrlport_req_addr (ps_power_ctrlport_req_addr),
.s_ctrlport_req_data (ps_power_ctrlport_req_data),
.s_ctrlport_resp_ack (ps_power_ctrlport_resp_ack),
.s_ctrlport_resp_status (ps_power_ctrlport_resp_status),
.s_ctrlport_resp_data (ps_power_ctrlport_resp_data),
.ipass_power_disable (IPASS_POWER_DISABLE),
.ipass_power_fault_n (IPASS_POWER_EN_FAULT),
.osc_100_en (PWR_EN_5V_OSC_100),
.osc_122_88_en (PWR_EN_5V_OSC_122_88)
);
// Termination of ctrlport request
ctrlport_terminator #(
.START_ADDRESS (POWER_REGISTERS + POWER_REGISTERS_SIZE),
.LAST_ADDRESS (2**CTRLPORT_ADDR_W-1)
) ps_terminator (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (ps_term_ctrlport_req_wr),
.s_ctrlport_req_rd (ps_term_ctrlport_req_rd),
.s_ctrlport_req_addr (ps_term_ctrlport_req_addr),
.s_ctrlport_req_data (ps_term_ctrlport_req_data),
.s_ctrlport_resp_ack (ps_term_ctrlport_resp_ack),
.s_ctrlport_resp_status (ps_term_ctrlport_resp_status),
.s_ctrlport_resp_data (ps_term_ctrlport_resp_data)
);
//---------------------------------------------------------------------------
// Reconfiguration
//---------------------------------------------------------------------------
// On-chip flash interface
//
// Naming is according to Avalon Memory-Mapped Interfaces:
// https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
wire csr_addr;
wire csr_read;
wire [31:0] csr_readdata;
wire csr_write;
wire [31:0] csr_writedata;
wire [16:0] data_addr;
wire data_read;
wire [31:0] data_readdata;
wire data_readdatavalid;
wire data_waitrequest;
wire data_write;
wire [31:0] data_writedata;
wire reset_clk50_n;
assign reset_clk50_n = ~reset_clk50;
on_chip_flash flash_inst (
.clock (clk50),
.avmm_csr_addr (csr_addr),
.avmm_csr_read (csr_read),
.avmm_csr_writedata (csr_writedata),
.avmm_csr_write (csr_write),
.avmm_csr_readdata (csr_readdata),
.avmm_data_addr (data_addr),
.avmm_data_read (data_read),
.avmm_data_writedata (data_writedata),
.avmm_data_write (data_write),
.avmm_data_readdata (data_readdata),
.avmm_data_waitrequest (data_waitrequest),
.avmm_data_readdatavalid (data_readdatavalid),
.avmm_data_burstcount (4'b0001),
.reset_n (reset_clk50_n)
);
reconfig_engine #(
.BASE_ADDRESS (RECONFIG),
.NUM_ADDRESSES (RECONFIG_SIZE),
.MEM_INIT (0)
) reconfig_engine_inst (
.ctrlport_clk (clk50),
.ctrlport_rst (reset_clk50),
.s_ctrlport_req_wr (ps_reconfig_ctrlport_req_wr),
.s_ctrlport_req_rd (ps_reconfig_ctrlport_req_rd),
.s_ctrlport_req_addr (ps_reconfig_ctrlport_req_addr),
.s_ctrlport_req_data (ps_reconfig_ctrlport_req_data),
.s_ctrlport_resp_ack (ps_reconfig_ctrlport_resp_ack),
.s_ctrlport_resp_status (ps_reconfig_ctrlport_resp_status),
.s_ctrlport_resp_data (ps_reconfig_ctrlport_resp_data),
.csr_addr (csr_addr),
.csr_read (csr_read),
.csr_writedata (csr_writedata),
.csr_write (csr_write),
.csr_readdata (csr_readdata),
.data_addr (data_addr),
.data_read (data_read),
.data_writedata (data_writedata),
.data_write (data_write),
.data_readdata (data_readdata),
.data_waitrequest (data_waitrequest),
.data_readdatavalid (data_readdatavalid)
);
//---------------------------------------------------------------------------
// CMI Interface
//---------------------------------------------------------------------------
// Control and status information clock transition
wire [39:0] serial_num_clk40;
wire cmi_ready_clk40;
wire cmi_other_side_detected_clk40;
handshake #(
.WIDTH (41)
) cmi_control_hs (
.clk_a (clk50),
.rst_a (reset_clk50),
.valid_a (1'b1),
.data_a ({cmi_ready_clk50, serial_num_clk50}),
.busy_a (),
.clk_b (clk40),
.valid_b (),
.data_b ({cmi_ready_clk40, serial_num_clk40})
);
synchronizer #(
.WIDTH (1),
.STAGES (2),
.INITIAL_VAL (1'b0),
.FALSE_PATH_TO_IN (1)
) cmi_status_sync (
.clk (clk50),
.rst (reset_clk50),
.in (cmi_other_side_detected_clk40),
.out (cmi_other_side_detected_clk50)
);
wire scl_out;
wire sda_out;
wire [1:0] ipass_cable_present_n = ~ipass_cable_present;
PcieCmiWrapper #(
.kSimulation (SIMULATION)
) pcie_cmi_inst (
.Clk (clk40),
.acReset (reset_clk40),
.cSerialNumber (serial_num_clk40),
.cBoardIsReady (cmi_ready_clk40),
.cCmiReset (PCIE_RESET),
.cOtherSideDetected (cmi_other_side_detected_clk40),
.aCblPrsnt_n (ipass_cable_present_n[0]),
.aSdaIn (IPASS_SDA[0]),
.aSdaOut (sda_out),
.aSclIn (IPASS_SCL[0]),
.aSclOut (scl_out)
);
// External pull-ups are used to drive the signal high
assign IPASS_SDA[0] = sda_out ? 1'bz : 1'b0;
assign IPASS_SCL[0] = scl_out ? 1'bz : 1'b0;
// No CMI controller for second interface
assign IPASS_SCL[1] = 1'bz;
assign IPASS_SDA[1] = 1'bz;
//---------------------------------------------------------------------------
// Miscellaneous
//---------------------------------------------------------------------------
// Constants
assign PS_CLK_ON_CPLD = 1'b0; // Active-low driving of PS clocks
assign TPM_RESET_n = 1'b1;
// Currently unused ports
assign PL_CPLD_IRQ = 1'b0;
endmodule
`default_nettype wire
//XmlParse xml_on
//<top name="X4XX_MB_CPLD">
// <regmapcfg readablestrobes="false">
// <map name="MB_CPLD_PS_REGMAP"/>
// <map name="MB_CPLD_PL_REGMAP"/>
// </regmapcfg>
//</top>
//<regmap name="MB_CPLD_PS_REGMAP" readablestrobes="false" markdown="true" generatevhdl="true" ettusguidelines="true">
// <info>
// This register map is available using the PS CPLD SPI interface.
// </info>
// <group name="MB_CPLD_PS_WINDOWS">
// <window name="PS_REGISTERS" offset="0x00" size="0x40" targetregmap="PS_CPLD_BASE_REGMAP"/>
// <window name="RECONFIG" offset="0x40" size="0x20" targetregmap="RECONFIG_REGMAP"/>
// <window name="POWER_REGISTERS" offset="0x60" size="0x20" targetregmap="PS_POWER_REGMAP"/>
// </group>
// <group name="PS_SPI_ENDPOINTS">
// <enumeratedtype name="SPI_ENDPOINT">
// <value name="PS_CS_MB_CPLD" integer="0"/>
// <value name="PS_CS_LMK32" integer="1"/>
// <value name="PS_CS_TPM" integer="2"/>
// <value name="PS_CS_PHASE_DAC" integer="3"/>
// <value name="PS_CS_DB0_CAL_EEPROM" integer="4"/>
// <value name="PS_CS_DB1_CAL_EEPROM" integer="5"/>
// <value name="PS_CS_CLK_AUX_DB" integer="6"/>
// <value name="PS_CS_IDLE" integer="7"/>
// </enumeratedtype>
// </group>
//</regmap>
//<regmap name="MB_CPLD_PL_REGMAP" readablestrobes="false" markdown="true" generatevhdl="true" ettusguidelines="true">
// <info>
// This register map is available using the PL CPLD SPI interface.
// All protocol masters controller by this register map are running with a clock frequency of 50 MHz.
// </info>
// <group name="MB_CPLD_PL_WINDOWS">
// <window name="PL_REGISTERS" offset="0x0" size="0x40" targetregmap="PL_CPLD_BASE_REGMAP"/>
// <window name="JTAG_DB0" offset="0x60" size="0x20" targetregmap="JTAG_REGMAP">
// <info>
// JTAG Master connected to first daugherboard's CPLD JTAG interface.
//
// **Use minimum value of 1 for @.JTAG_REGMAP.prescalar because the DB CPLD JTAG interface maximum clock frequency is 20 MHz.**
// </info>
// </window>
// <window name="JTAG_DB1" offset="0x80" size="0x20" targetregmap="JTAG_REGMAP">
// <info>
// JTAG Master connected to second daugherboard's CPLD JTAG interface.
//
// **Use minimum value of 1 for @.JTAG_REGMAP.prescalar because the DB CPLD JTAG interface maximum clock frequency is 20 MHz.**
// </info>
// </window>
// </group>
//</regmap>
//<regmap name="CONSTANTS_REGMAP" readablestrobes="false" generatevhdl="true" ettusguidelines="true">
// <group name="CONSTANTS_GROUP">
// <info>
// Basic registers containing version and capabilities information.
// </info>
// <enumeratedtype name="CONSTANTS_ENUM" showhexvalue="true">
// <info>
// This enumeration is used to create the constants held in the basic registers.
// </info>
// <value name="PS_CPLD_SIGNATURE" integer="0x0A522D27"/>
// <value name="PL_CPLD_SIGNATURE" integer="0x3FDC5C47"/>
// <value name="CPLD_REVISION" integer="0x21012015"/>
// <value name="OLDEST_CPLD_REVISION" integer="0x20122114"/>
// </enumeratedtype>
// </group>
//</regmap>
//XmlParse xml_off
|