1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
|
///////////////////////////////////
//
// Copyright 2016-2017 Ettus Research LLC
// Copyright 2017 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// NOTE: A set of precompiler directives configure the features in an FPGA build
// and are listed here. These should be set exclusively using the Makefile mechanism provided.
//
// SFP0_10GBE - Ethernet Port0 is configured for 10G (default is 1G)
// SFP1_10GBE - Ethernet Port1 is configured for 10G (default is 1G)
// DEBUG_UART - Adds 115kbaud UART to GPIO pins 10 & 11 for firmware debug
//
///////////////////////////////////
//Defines `LVFPGA_IFACE constants
`include "../../lib/io_port2/LvFpga_Chinch_Interface.vh"
module x300
(
///////////////////////////////////
//
// Clock sources for main FPGA clocks
//
///////////////////////////////////
input FPGA_CLK_p, input FPGA_CLK_n,
input FPGA_125MHz_CLK,
///////////////////////////////////
//
// High Speed SPF+ signals and clocking
//
///////////////////////////////////
`ifdef BUILD_1G
input ETH_CLK_p, input ETH_CLK_n,
`endif
`ifdef BUILD_10G
`define BUILD_10G_OR_AURORA
`endif
`ifdef BUILD_AURORA
`define BUILD_10G_OR_AURORA
`endif
`ifdef BUILD_10G_OR_AURORA
input XG_CLK_p, input XG_CLK_n,
`endif
input SFP0_RX_p, input SFP0_RX_n,
output SFP0_TX_p, output SFP0_TX_n,
input SFP1_RX_p, input SFP1_RX_n,
output SFP1_TX_p, output SFP1_TX_n,
///////////////////////////////////
//
// DRAM Interface
//
///////////////////////////////////
inout [31:0] ddr3_dq, // Data pins. Input for Reads, Output for Writes.
inout [3:0] ddr3_dqs_n, // Data Strobes. Input for Reads, Output for Writes.
inout [3:0] ddr3_dqs_p,
//
output [14:0] ddr3_addr, // Address
output [2:0] ddr3_ba, // Bank Address
output ddr3_ras_n, // Row Address Strobe.
output ddr3_cas_n, // Column address select
output ddr3_we_n, // Write Enable
output ddr3_reset_n, // SDRAM reset pin.
output [0:0] ddr3_ck_p, // Differential clock
output [0:0] ddr3_ck_n,
output [0:0] ddr3_cke, // Clock Enable
output [0:0] ddr3_cs_n, // Chip Select
output [3:0] ddr3_dm, // Data Mask [3] = UDM.U26, [2] = LDM.U26, ...
output [0:0] ddr3_odt, // On-Die termination enable.
//
input sys_clk_i, // 100MHz clock source to generate DDR3 clocking.
///////////////////////////////////
//
// IOPORT2
//
///////////////////////////////////
//-- The IO_Port2 asynchronous handshaking pins
input aIoResetIn_n,
output aIoReadyOut,
input aIoReadyIn,
output aIoPort2Restart,
input aStc3Gpio7,
//-- The IO_Port2 high speed receiver pins
input IoRxClock,
input IoRxClock_n,
input [15:0] irIoRxData,
input [15:0] irIoRxData_n,
input irIoRxHeader,
input irIoRxHeader_n,
//-- The IO_Port2 high speed transmitter interface pins
output IoTxClock,
output IoTxClock_n,
output [15:0] itIoTxData,
output [15:0] itIoTxData_n,
output itIoTxHeader,
output itIoTxHeader_n,
output aIrq,
///////////////////////////////////
//
// ADC and DAC interfaces
//
///////////////////////////////////
input DB0_ADC_DCLK_P, input DB0_ADC_DCLK_N,
input DB0_ADC_DA0_P, input DB0_ADC_DA0_N, input DB0_ADC_DB0_P, input DB0_ADC_DB0_N,
input DB0_ADC_DA1_P, input DB0_ADC_DA1_N, input DB0_ADC_DB1_P, input DB0_ADC_DB1_N,
input DB0_ADC_DA2_P, input DB0_ADC_DA2_N, input DB0_ADC_DB2_P, input DB0_ADC_DB2_N,
input DB0_ADC_DA3_P, input DB0_ADC_DA3_N, input DB0_ADC_DB3_P, input DB0_ADC_DB3_N,
input DB0_ADC_DA4_P, input DB0_ADC_DA4_N, input DB0_ADC_DB4_P, input DB0_ADC_DB4_N,
input DB0_ADC_DA5_P, input DB0_ADC_DA5_N, input DB0_ADC_DB5_P, input DB0_ADC_DB5_N,
input DB0_ADC_DA6_P, input DB0_ADC_DA6_N, input DB0_ADC_DB6_P, input DB0_ADC_DB6_N,
input DB1_ADC_DCLK_P, input DB1_ADC_DCLK_N,
input DB1_ADC_DA0_P, input DB1_ADC_DA0_N, input DB1_ADC_DB0_P, input DB1_ADC_DB0_N,
input DB1_ADC_DA1_P, input DB1_ADC_DA1_N, input DB1_ADC_DB1_P, input DB1_ADC_DB1_N,
input DB1_ADC_DA2_P, input DB1_ADC_DA2_N, input DB1_ADC_DB2_P, input DB1_ADC_DB2_N,
input DB1_ADC_DA3_P, input DB1_ADC_DA3_N, input DB1_ADC_DB3_P, input DB1_ADC_DB3_N,
input DB1_ADC_DA4_P, input DB1_ADC_DA4_N, input DB1_ADC_DB4_P, input DB1_ADC_DB4_N,
input DB1_ADC_DA5_P, input DB1_ADC_DA5_N, input DB1_ADC_DB5_P, input DB1_ADC_DB5_N,
input DB1_ADC_DA6_P, input DB1_ADC_DA6_N, input DB1_ADC_DB6_P, input DB1_ADC_DB6_N,
output DB0_DAC_DCI_P, output DB0_DAC_DCI_N,
output DB0_DAC_FRAME_P, output DB0_DAC_FRAME_N,
output DB0_DAC_D0_P, output DB0_DAC_D0_N, output DB0_DAC_D1_P, output DB0_DAC_D1_N,
output DB0_DAC_D2_P, output DB0_DAC_D2_N, output DB0_DAC_D3_P, output DB0_DAC_D3_N,
output DB0_DAC_D4_P, output DB0_DAC_D4_N, output DB0_DAC_D5_P, output DB0_DAC_D5_N,
output DB0_DAC_D6_P, output DB0_DAC_D6_N, output DB0_DAC_D7_P, output DB0_DAC_D7_N,
output DB0_DAC_ENABLE,
output DB1_DAC_DCI_P, output DB1_DAC_DCI_N,
output DB1_DAC_FRAME_P, output DB1_DAC_FRAME_N,
output DB1_DAC_D0_P, output DB1_DAC_D0_N, output DB1_DAC_D1_P, output DB1_DAC_D1_N,
output DB1_DAC_D2_P, output DB1_DAC_D2_N, output DB1_DAC_D3_P, output DB1_DAC_D3_N,
output DB1_DAC_D4_P, output DB1_DAC_D4_N, output DB1_DAC_D5_P, output DB1_DAC_D5_N,
output DB1_DAC_D6_P, output DB1_DAC_D6_N, output DB1_DAC_D7_P, output DB1_DAC_D7_N,
output DB1_DAC_ENABLE,
output DB0_SCLK, output DB0_MOSI,
output DB0_ADC_SEN, output DB0_DAC_SEN, output DB0_TX_SEN, output DB0_RX_SEN,
output DB0_RX_LSADC_SEN, output DB0_RX_LSDAC_SEN, output DB0_TX_LSADC_SEN, output DB0_TX_LSDAC_SEN,
input DB0_RX_LSADC_MISO, input DB0_RX_MISO, input DB0_TX_LSADC_MISO, input DB0_TX_MISO,
output DB1_SCLK, output DB1_MOSI,
output DB1_ADC_SEN, output DB1_DAC_SEN, output DB1_TX_SEN, output DB1_RX_SEN,
output DB1_RX_LSADC_SEN, output DB1_RX_LSDAC_SEN, output DB1_TX_LSADC_SEN, output DB1_TX_LSDAC_SEN,
input DB1_RX_LSADC_MISO, input DB1_RX_MISO, input DB1_TX_LSADC_MISO, input DB1_TX_MISO,
output DB_DAC_SCLK, inout DB_DAC_MOSI,
output DB_ADC_RESET, output DB_DAC_RESET,
inout DB_SCL, inout DB_SDA,
///////////////////////////////////
//
// GPIO/LEDS/Etc
//
///////////////////////////////////
inout [11:0] FrontPanelGpio,
output LED_ACT1, output LED_ACT2,
output LED_LINK1, output LED_LINK2,
output LED_PPS, output LED_REFLOCK, output LED_GPSLOCK,
output LED_LINKSTAT, output LED_LINKACT,
output LED_RX1_RX, output LED_RX2_RX,
output LED_TXRX1_RX, output LED_TXRX1_TX,
output LED_TXRX2_RX, output LED_TXRX2_TX,
inout [15:0] DB0_TX_IO,
inout [15:0] DB0_RX_IO,
inout [15:0] DB1_TX_IO,
inout [15:0] DB1_RX_IO,
///////////////////////////////////
//
// LMK CLock chip
//
///////////////////////////////////
input [1:0] LMK_Status,
input LMK_Holdover,
input LMK_Lock,
input LMK_Sync, //not used, we do soft sync
output LMK_SEN, output LMK_MOSI, output LMK_SCLK,
///////////////////////////////////
//
// GPSDO and Clock Refs
//
///////////////////////////////////
output [1:0] ClockRefSelect,
output GPS_SER_IN, input GPS_SER_OUT,
input GPS_PPS_OUT, input EXT_PPS_IN,
output EXT_PPS_OUT, input GPS_LOCK_OK,
output GPSDO_PWR_ENA, output TCXO_ENA,
output CPRI_CLK_OUT_P, output CPRI_CLK_OUT_N,
input FPGA_REFCLK_10MHz_p, input FPGA_REFCLK_10MHz_n,
///////////////////////////////////
//
// Supporting I/O for SPF+ interfaces
// (non high speed stuff)
//
///////////////////////////////////
inout SFPP0_SCL, inout SFPP0_SDA,
input SFPP0_ModAbs,
input SFPP0_RxLOS, // High if module asserts Loss of Signal
input SFPP0_TxFault, // Current 10G PMA/PCS apparently ignores this signal.
output SFPP0_RS0, // These are actually open drain outputs
output SFPP0_RS1, // CAUTION! Take great care, this signal shorted to VeeR on SFP module.
output SFPP0_TxDisable, // These are actually open drain outputs
inout SFPP1_SCL, inout SFPP1_SDA,
input SFPP1_ModAbs,
input SFPP1_RxLOS, // High if module asserts Loss of Signal
input SFPP1_TxFault, // Current 10G PMA/PCS apparently ignores this signal.
output SFPP1_RS0, // These are actually open drain outputs
output SFPP1_RS1, // CAUTION! Take great care, this signal shorted to VeeR on SFP module.
output SFPP1_TxDisable, // These are actually open drain outputs
///////////////////////////////////
//
// Misc.
//
///////////////////////////////////
input FPGA_PUDC_B
);
wire radio_clk, radio_clk_2x, dac_dci_clk;
wire global_rst, radio_rst, bus_rst, bus_rst_div2, ce_rst, adc_idlyctrl_rst;
wire [3:0] sw_rst;
wire [2:0] led0, led1;
////////////////////////////////////////////////////////////////////
//
// Generate Bus Clock and PCIe Clocks.
// Source clock comes from U19 which is fixed freq
// and bufferd to be used by STC3 also (Page17 schematics).
//
////////////////////////////////////////////////////////////////////
wire fpga_clk125, bus_clk, bus_clk_div2, ce_clk, ioport2_clk, rio40_clk, ioport2_idelay_ref_clk;
wire bus_clk_locked, rio40_clk_locked, rio40_clk_reset;
IBUFG fpga_125MHz_clk_buf (
.I(FPGA_125MHz_CLK),
.O(fpga_clk125));
//----------------------------------------------------------------------------
// Output Output Phase Duty Cycle Pk-to-Pk Phase
// Clock Freq (MHz) (degrees) (%) Jitter (ps) Error (ps)
//----------------------------------------------------------------------------
// CLK_OUT1___187.500______0.000______50.0_______85.263_____73.940
// CLK_OUT2___125.000______0.000______50.0_______91.831_____73.940
// CLK_OUT3____93.750______0.000______50.0_______96.813_____73.940
// CLK_OUT4___214.286______0.000______50.0_______83.210_____73.940
//
//----------------------------------------------------------------------------
// Input Clock Freq (MHz) Input Jitter (UI)
//----------------------------------------------------------------------------
// __primary_________125.000____________0.010
localparam BUS_CLK_RATE = 32'd187500000;
wire ioport2_clk_unbuf;
bus_clk_gen bus_clk_gen (
.CLK_IN1(fpga_clk125),
.CLKFB_IN(ioport2_clk),
.CLK_OUT1(bus_clk),
.CLK_OUT2_UNBUF(/* unused */), //This exists to make the IP generate a 125MHz FB clock
.CLK_OUT3(bus_clk_div2), //bus_clk divided by 2. used by sc/zpu
.CLK_OUT4(ce_clk),
.CLKFB_OUT(ioport2_clk_unbuf),
.LOCKED(bus_clk_locked));
BUFG ioport2_clk_bufg_i (
.O(ioport2_clk),
.I(ioport2_clk_unbuf));
//----------------------------------------------------------------------------
// Output Output Phase Duty Cycle Pk-to-Pk Phase
// Clock Freq (MHz) (degrees) (%) Jitter (ps) Error (ps)
//----------------------------------------------------------------------------
// CLK_OUT1____40.000______0.000______50.0______353.417_____96.948
// CLK_OUT2___200.000______0.000______50.0______192.299_____96.948
//
//----------------------------------------------------------------------------
// Input Clock Freq (MHz) Input Jitter (UI)
//----------------------------------------------------------------------------
// __primary_________125.000____________0.100
//rio40_clk and ioport2_idelay_ref_clk cannot share a PLL/MMCM reset with ioport2_clk
//so they have to come from a different clocking primitive instance
pcie_clk_gen pcie_clk_gen (
.CLK_IN1(fpga_clk125),
.CLK_OUT1(rio40_clk),
.CLK_OUT2(ioport2_idelay_ref_clk),
.RESET(rio40_clk_reset),
.LOCKED(rio40_clk_locked));
/////////////////////////////////////////////////////////////////////
//
// 10MHz Reference clock
//
//////////////////////////////////////////////////////////////////////
wire ref_clk;
IBUFDS IBUFDS_ref_clk (
.O(ref_clk),
.I(FPGA_REFCLK_10MHz_p),
.IB(FPGA_REFCLK_10MHz_n)
);
//////////////////////////////////////////////////////////////////////
// CPRI Clock output -- this is the dirty recovered clock from the MGT
// This goes to the LMK04816 which locks to it and cleans it up
// We get the clean versions back as CPRI_CLK (for the CPRI MGT)
// and FPGA_CLK (for our main rfclk)
//////////////////////////////////////////////////////////////////////
wire cpri_clk_out = 1'b0; // FIXME - connect to CPRI clock recovery when implemented
OBUFDS OBUFDS_cpri (.I(cpri_clk_out), .O(CPRI_CLK_OUT_P), .OB(CPRI_CLK_OUT_N));
/////////////////////////////////////////////////////////////////////
//
// power-on-reset logic.
//
//////////////////////////////////////////////////////////////////////
por_gen por_gen(.clk(bus_clk), .reset_out(global_rst));
//////////////////////////////////////////////////////////////////////
wire [31:0] rx0, rx1;
wire [31:0] tx0, tx1;
wire sclk0, mosi0, miso0, sclk1, mosi1, miso1;
wire [7:0] sen0, sen1;
wire set_stb;
wire [7:0] set_addr;
wire [31:0] set_data;
////////////////////////////////////////////////////////////////////
//
// Generate Radio Clocks from LMK04816
// Radio clock is normally 200MHz, radio_clk_2x 400MHz.
// In CPRI or LTE mode, radio clock is 184.32 MHz.
// radio_clk_2x is only to be used for clocking out TX samples to DAC
//
//----------------------------------------------------------------------------
// Output Output Phase Duty Cycle Pk-to-Pk Phase
// Clock Freq (MHz) (degrees) (%) Jitter (ps) Error (ps)
//----------------------------------------------------------------------------
// CLK_OUT1___200.000______0.000______50.0_______92.799_____82.655
// CLK_OUT2___400.000____-45.000______50.0_______81.254_____82.655
// CLK_OUT3___400.000_____60.000______50.0_______81.254_____82.655
//
//----------------------------------------------------------------------------
// Input Clock Freq (MHz) Input Jitter (UI)
//----------------------------------------------------------------------------
// __primary_________200.000____________0.010
//
////////////////////////////////////////////////////////////////////
wire radio_clk_locked;
radio_clk_gen radio_clk_gen (
.clk_in1_p(FPGA_CLK_p), .clk_in1_n(FPGA_CLK_n),
.CLK_OUT1(radio_clk), .CLK_OUT2(radio_clk_2x), .CLK_OUT3(dac_dci_clk),
.RESET(sw_rst[2]), .LOCKED(radio_clk_locked));
////////////////////////////////////////////////////////////////////
//
// IJB. Radio PLL doesn't seem to lock at power up.
// Probably needs AD9610 to be programmed to 120 or 200MHz to get
// an input clock thats in the ball park for PLL configuration.
// Currently use busclk PLL lock signal to control this reset,
// but we should find a better solution, perhaps a S/W controllable
// reset like the ETH PHY uses so that we can reset this clock domain
// after programming the AD9610.
//
////////////////////////////////////////////////////////////////////
reset_sync radio_reset_sync (
.clk(radio_clk),
.reset_in(global_rst || !bus_clk_locked || sw_rst[1]),
.reset_out(radio_rst)
);
reset_sync int_reset_sync (
.clk(bus_clk),
.reset_in(global_rst || !bus_clk_locked),
.reset_out(bus_rst)
);
reset_sync int_div2_reset_sync (
.clk(bus_clk_div2),
.reset_in(global_rst || !bus_clk_locked),
.reset_out(bus_rst_div2)
);
reset_sync adc_idlyctrl_reset_sync (
.clk(bus_clk),
.reset_in(global_rst || !bus_clk_locked || sw_rst[3]),
.reset_out(adc_idlyctrl_rst)
);
reset_sync ce_reset_sync (
.clk(ce_clk),
.reset_in(global_rst || !bus_clk_locked),
.reset_out(ce_rst)
);
////////////////////////////////////////////////////////////////////
// PPS
// Support for internal, external, and GPSDO PPS inputs
// Every attempt to minimize propagation between the external PPS
// input and outputs to support daisy-chaining the signal.
////////////////////////////////////////////////////////////////////
wire int_pps;
wire [31:0] ref_freq;
wire ref_freq_changed;
wire ref_freq_sync_empty;
wire [71:0] ref_freq_sync_out;
reg new_ref_freq = 0;
reg [31:0] ref_freq_refclk = 10_000_000; // Default to 10 MHz reference
// Synchronize ref_freq to ref_clk
fifo_short_2clk ref_freq_sync
(
.rst(bus_rst),
.wr_clk(bus_clk),
.rd_clk(ref_clk),
.din({40'd0,ref_freq}),
.wr_en(ref_freq_changed),
.rd_en(new_ref_freq),
.dout(ref_freq_sync_out),
.full( /* unused */ ),
.empty(ref_freq_sync_empty),
.rd_data_count( /* unused */ ),
.wr_data_count( /* unused */ )
);
// Capture the new reference frequency
always @(posedge ref_clk) begin
if (~ref_freq_sync_empty) begin
ref_freq_refclk <= ref_freq_sync_out[31:0];
new_ref_freq <= 1'b1;
end else
new_ref_freq <= 1'b0;
end
// Generate an internal PPS signal with a 25% duty cycle
pulse_generator #(.WIDTH(32)) pps_gen
(
.clk(ref_clk),
.reset(new_ref_freq),
.period(ref_freq_refclk),
//shift frequency by 2 bits (divide by 4) for a 25% duty cycle
.pulse_width({2'b00,ref_freq_refclk[31:2]}),
.pulse(int_pps)
);
// PPS MUX - selects internal, external, or gpsdo PPS
reg pps;
wire [1:0] pps_select;
wire pps_out_enb;
always @(*) begin
case(pps_select)
2'b00 : pps = EXT_PPS_IN;
2'b01 : pps = 1'b0;
2'b10 : pps = int_pps;
2'b11 : pps = GPS_PPS_OUT;
default: pps = 1'b0;
endcase
end
// PPS out and LED
assign EXT_PPS_OUT = pps & pps_out_enb;
assign LED_PPS = ~pps; // active low LED driver
assign LED_GPSLOCK = ~GPS_LOCK_OK;
assign LED_REFLOCK = ~LMK_Lock;
assign {LED_RX1_RX,LED_TXRX1_TX,LED_TXRX1_RX} = ~led0; // active low LED driver
assign {LED_RX2_RX,LED_TXRX2_TX,LED_TXRX2_RX} = ~led1; // active low LED driver
// Allocate SPI chip selects to various slaves.
assign {DB1_DAC_SEN, DB1_ADC_SEN, DB1_RX_LSADC_SEN, DB1_RX_LSDAC_SEN, DB1_TX_LSADC_SEN, DB1_TX_LSDAC_SEN, DB1_RX_SEN, DB1_TX_SEN} = sen1;
assign {DB0_DAC_SEN, DB0_ADC_SEN, DB0_RX_LSADC_SEN, DB0_RX_LSDAC_SEN, DB0_TX_LSADC_SEN, DB0_TX_LSDAC_SEN, DB0_RX_SEN, DB0_TX_SEN} = sen0;
wire db_dac_mosi_int, db_dac_miso;
wire drive_dac_pin;
reg drop_dac_pin;
reg [5:0] bitcount;
reg sclk_d1;
// Register copy of outgoing DAC clock to do synchronous edge detect.
always @(posedge radio_clk) sclk_d1 <= DB_DAC_SCLK;
always @(posedge radio_clk)
// If neither DAC is selected keep counter reset
if(DB0_DAC_SEN & DB1_DAC_SEN)
begin
bitcount <= 6'd0;
drop_dac_pin <= 1'b0;
end
else if(~DB_DAC_SCLK & sclk_d1)
// Falling edge of SCLK detected.
begin
bitcount <= bitcount + 6'd1;
end
else if(bitcount == 0 & DB_DAC_SCLK & ~sclk_d1)
// On first rising edge store R/W bit to determine if we tristate after 8bits for a Read.
drop_dac_pin <= db_dac_mosi_int;
assign drive_dac_pin = (bitcount < 8) | ~drop_dac_pin;
// Both DAC's use a single SPI bus on PCB. Select appriate Radio to drive the SPi bus by looking at chip selects.
assign { DB_DAC_SCLK, db_dac_mosi_int } = ~DB0_DAC_SEN ? {sclk0, mosi0} : ~DB1_DAC_SEN ? {sclk1,mosi1} : 2'b0;
// Data to/from DAC's is bi-dir so tristate driver when reading.
assign DB_DAC_MOSI = drive_dac_pin ? db_dac_mosi_int : 1'bz;
// I/O Input buffer
assign db_dac_miso = DB_DAC_MOSI;
// If any SPI Slave is selected (except DAC) then drive SPI clk and MOSI out onto duaghterboard.
assign { DB0_SCLK, DB0_MOSI } = (~&sen0[6:0]) ? {sclk0,mosi0} : 2'b0;
assign { DB1_SCLK, DB1_MOSI } = (~&sen1[6:0]) ? {sclk1,mosi1} : 2'b0;
// Wired OR Mux together the possible sources of read data from SPI devices.
assign miso0 = (~DB0_RX_LSADC_SEN & DB0_RX_LSADC_MISO) |
(~DB0_RX_SEN & DB0_RX_MISO) |
(~DB0_TX_LSADC_SEN & DB0_TX_LSADC_MISO) |
(~DB0_TX_SEN & DB0_TX_MISO) |
(~DB0_DAC_SEN & db_dac_miso);
assign miso1 = (~DB1_RX_LSADC_SEN & DB1_RX_LSADC_MISO) |
(~DB1_RX_SEN & DB1_RX_MISO) |
(~DB1_TX_LSADC_SEN & DB1_TX_LSADC_MISO) |
(~DB1_TX_SEN & DB1_TX_MISO) |
(~DB1_DAC_SEN & db_dac_miso);
wire [31:0] radio0_misc_out, radio1_misc_out;
wire [31:0] radio0_misc_in, radio1_misc_in;
/////////////////////////////////////////////////////////////////////
//
// ADC Interface for ADS62P48
//
/////////////////////////////////////////////////////////////////////
wire [13:0] rx0_q_inv, rx1_q_inv, rx0_i, rx1_i;
// Analog diff pairs on I side of ADC are inverted for layout reasons, but data diff pairs are all swapped as well
// so I gets a double negative, and is unchanged. Q must be inverted.
capture_ddrlvds #(
.WIDTH(14),
.PATT_CHECKER("TRUE"),
.DATA_IDELAY_MODE("DYNAMIC"), .DATA_IDELAY_VAL(16), .DATA_IDELAY_FREF(200.0)
) cap_db0 (
.adc_clk_p(DB0_ADC_DCLK_P), .adc_clk_n(DB0_ADC_DCLK_N),
.adc_data_p(
{{DB0_ADC_DA6_P, DB0_ADC_DA5_P, DB0_ADC_DA4_P, DB0_ADC_DA3_P, DB0_ADC_DA2_P, DB0_ADC_DA1_P, DB0_ADC_DA0_P},
{DB0_ADC_DB6_P, DB0_ADC_DB5_P, DB0_ADC_DB4_P, DB0_ADC_DB3_P, DB0_ADC_DB2_P, DB0_ADC_DB1_P, DB0_ADC_DB0_P}}),
.adc_data_n(
{{DB0_ADC_DA6_N, DB0_ADC_DA5_N, DB0_ADC_DA4_N, DB0_ADC_DA3_N, DB0_ADC_DA2_N, DB0_ADC_DA1_N, DB0_ADC_DA0_N},
{DB0_ADC_DB6_N, DB0_ADC_DB5_N, DB0_ADC_DB4_N, DB0_ADC_DB3_N, DB0_ADC_DB2_N, DB0_ADC_DB1_N, DB0_ADC_DB0_N}}),
.radio_clk(radio_clk),
.data_delay_stb(radio0_misc_out[3]), .data_delay_val(radio0_misc_out[8:4]),
.adc_cap_clk(),
.data_out({rx0_i,rx0_q_inv}),
.checker_en(radio0_misc_out[9]), .checker_locked(radio0_misc_in[3:0]), .checker_failed(radio0_misc_in[7:4])
);
assign rx0[31:0] = { rx0_i, 2'b00, ~rx0_q_inv, 2'b00 };
capture_ddrlvds #(
.WIDTH(14),
.PATT_CHECKER("TRUE"),
.DATA_IDELAY_MODE("DYNAMIC"), .DATA_IDELAY_VAL(16), .DATA_IDELAY_FREF(200.0)
) cap_db1 (
.adc_clk_p(DB1_ADC_DCLK_P), .adc_clk_n(DB1_ADC_DCLK_N),
.adc_data_p(
{{DB1_ADC_DA6_P, DB1_ADC_DA5_P, DB1_ADC_DA4_P, DB1_ADC_DA3_P, DB1_ADC_DA2_P, DB1_ADC_DA1_P, DB1_ADC_DA0_P},
{DB1_ADC_DB6_P, DB1_ADC_DB5_P, DB1_ADC_DB4_P, DB1_ADC_DB3_P, DB1_ADC_DB2_P, DB1_ADC_DB1_P, DB1_ADC_DB0_P}}),
.adc_data_n(
{{DB1_ADC_DA6_N, DB1_ADC_DA5_N, DB1_ADC_DA4_N, DB1_ADC_DA3_N, DB1_ADC_DA2_N, DB1_ADC_DA1_N, DB1_ADC_DA0_N},
{DB1_ADC_DB6_N, DB1_ADC_DB5_N, DB1_ADC_DB4_N, DB1_ADC_DB3_N, DB1_ADC_DB2_N, DB1_ADC_DB1_N, DB1_ADC_DB0_N}}),
.radio_clk(radio_clk),
.data_delay_stb(radio1_misc_out[3]), .data_delay_val(radio1_misc_out[8:4]),
.adc_cap_clk(),
.data_out({rx1_i,rx1_q_inv}),
.checker_en(radio1_misc_out[9]), .checker_locked(radio1_misc_in[3:0]), .checker_failed(radio1_misc_in[7:4])
);
assign rx1[31:0] = { rx1_i, 2'b00, ~rx1_q_inv, 2'b00 };
// IDELAYCTRL to calibrate all IDELAYE2 instances in capture_ddrlvds for both sides
wire adc_idlyctrl_rdy;
IDELAYCTRL adc_cap_idelayctrl_i (.RDY(adc_idlyctrl_rdy), .REFCLK(radio_clk), .RST(adc_idlyctrl_rst));
/////////////////////////////////////////////////////////////////////
//
// DAC Interface for AD9146
//
/////////////////////////////////////////////////////////////////////
gen_ddrlvds gen_db0
(
.reset(radio_rst),
.tx_clk_2x_p(DB0_DAC_DCI_P), .tx_clk_2x_n(DB0_DAC_DCI_N),
.tx_frame_p(DB0_DAC_FRAME_P), .tx_frame_n(DB0_DAC_FRAME_N),
.tx_d_p({DB0_DAC_D7_P,DB0_DAC_D6_P,DB0_DAC_D5_P,DB0_DAC_D4_P,DB0_DAC_D3_P,DB0_DAC_D2_P,DB0_DAC_D1_P,DB0_DAC_D0_P}),
.tx_d_n({DB0_DAC_D7_N,DB0_DAC_D6_N,DB0_DAC_D5_N,DB0_DAC_D4_N,DB0_DAC_D3_N,DB0_DAC_D2_N,DB0_DAC_D1_N,DB0_DAC_D0_N}),
.tx_clk_2x(radio_clk_2x), .tx_clk_1x(radio_clk), .tx_dci_clk(dac_dci_clk),
.i(~tx0[31:16]), .q(~tx0[15:0]), // invert b/c Analog diff pairs are swapped for layout
.sync_dacs(radio0_misc_out[10]|radio1_misc_out[10])
);
gen_ddrlvds gen_db1
(
.reset(radio_rst),
.tx_clk_2x_p(DB1_DAC_DCI_P), .tx_clk_2x_n(DB1_DAC_DCI_N),
.tx_frame_p(DB1_DAC_FRAME_P), .tx_frame_n(DB1_DAC_FRAME_N),
.tx_d_p({DB1_DAC_D7_P,DB1_DAC_D6_P,DB1_DAC_D5_P,DB1_DAC_D4_P,DB1_DAC_D3_P,DB1_DAC_D2_P,DB1_DAC_D1_P,DB1_DAC_D0_P}),
.tx_d_n({DB1_DAC_D7_N,DB1_DAC_D6_N,DB1_DAC_D5_N,DB1_DAC_D4_N,DB1_DAC_D3_N,DB1_DAC_D2_N,DB1_DAC_D1_N,DB1_DAC_D0_N}),
.tx_clk_2x(radio_clk_2x), .tx_clk_1x(radio_clk), .tx_dci_clk(dac_dci_clk),
.i(~tx1[31:16]), .q(~tx1[15:0]), // invert b/c Analog diff pairs are swapped for layout
.sync_dacs(radio0_misc_out[10]|radio1_misc_out[10])
);
wire [1:0] leds;
assign {LED_LINKSTAT, LED_LINKACT} = ~leds;
wire [31:0] debug;
//////////////////////////////////////////////////////////////////////
//
// PCIe Stuff
//
//////////////////////////////////////////////////////////////////////
localparam IOP2_MSG_WIDTH = 64;
localparam DMA_STREAM_WIDTH = `LVFPGA_IFACE_DMA_CHAN_WIDTH;
localparam DMA_COUNT_WIDTH = `LVFPGA_IFACE_DMA_SIZE_WIDTH;
localparam NUM_TX_STREAMS = `LVFPGA_IFACE_NUM_TX_DMA_CNT;
localparam NUM_RX_STREAMS = `LVFPGA_IFACE_NUM_RX_DMA_CNT;
localparam TX_STREAM_START_IDX = `LVFPGA_IFACE_TX_DMA_INDEX;
localparam RX_STREAM_START_IDX = `LVFPGA_IFACE_RX_DMA_INDEX;
localparam DMA_DEST_WIDTH = 3;
wire [DMA_STREAM_WIDTH-1:0] dmatx_tdata, dmarx_tdata, pcii_tdata, pcio_tdata;
wire [DMA_DEST_WIDTH-1:0] dmatx_tuser, dmarx_tuser, pcii_tuser, pcio_tuser;
wire dmatx_tvalid, dmarx_tvalid, pcii_tvalid, pcio_tvalid;
wire dmatx_tlast, dmarx_tlast, pcii_tlast, pcio_tlast;
wire dmatx_tready, dmarx_tready, pcii_tready, pcio_tready;
wire [IOP2_MSG_WIDTH-1:0] o_iop2_msg_tdata, i_iop2_msg_tdata;
wire o_iop2_msg_tvalid, o_iop2_msg_tlast, o_iop2_msg_tready;
wire i_iop2_msg_tvalid, i_iop2_msg_tlast, i_iop2_msg_tready;
wire pcie_usr_reg_wr, pcie_usr_reg_rd, pcie_usr_reg_rc, pcie_usr_reg_rdy;
wire [1:0] pcie_usr_reg_len;
wire [19:0] pcie_usr_reg_addr;
wire [31:0] pcie_usr_reg_data_in, pcie_usr_reg_data_out;
wire chinch_reg_wr, chinch_reg_rd, chinch_reg_rc, chinch_reg_rdy;
wire [1:0] chinch_reg_len;
wire [19:0] chinch_reg_addr;
wire [31:0] chinch_reg_data_out;
wire [63:0] chinch_reg_data_in;
wire [(NUM_TX_STREAMS*DMA_STREAM_WIDTH)-1:0] dmatx_tdata_iop2;
wire [NUM_TX_STREAMS-1:0] dmatx_tvalid_iop2, dmatx_tready_iop2;
wire [(NUM_RX_STREAMS*DMA_STREAM_WIDTH)-1:0] dmarx_tdata_iop2;
wire [NUM_RX_STREAMS-1:0] dmarx_tvalid_iop2, dmarx_tready_iop2;
//PCIe Express "Physical" DMA and Register logic
LvFpga_Chinch_Interface lvfpga_chinch_inst
(
.aIoResetIn_n(aIoResetIn_n),
.bBusReset(), //Output
// Clocks
.BusClk(ioport2_clk),
.Rio40Clk(rio40_clk),
.IDelayRefClk(ioport2_idelay_ref_clk),
.aRioClkPllLocked(rio40_clk_locked),
.aRioClkPllReset(rio40_clk_reset),
// The IO_Port2 asynchronous handshaking pins
.aIoReadyOut(aIoReadyOut),
.aIoReadyIn(aIoReadyIn),
.aIoPort2Restart(aIoPort2Restart),
// The IO_Port2 high speed receiver pins
.IoRxClock(IoRxClock),
.IoRxClock_n(IoRxClock_n),
.irIoRxData(irIoRxData),
.irIoRxData_n(irIoRxData_n),
.irIoRxHeader(irIoRxHeader),
.irIoRxHeader_n(irIoRxHeader_n),
// The IO_Port2 high speed transmitter interface pins
.IoTxClock(IoTxClock),
.IoTxClock_n(IoTxClock_n),
.itIoTxData(itIoTxData),
.itIoTxData_n(itIoTxData_n),
.itIoTxHeader(itIoTxHeader),
.itIoTxHeader_n(itIoTxHeader_n),
// DMA TX Fifos
.bDmaTxData(dmatx_tdata_iop2),
.bDmaTxValid(dmatx_tvalid_iop2),
.bDmaTxReady(dmatx_tready_iop2),
.bDmaTxEnabled(),
.bDmaTxFifoFullCnt(),
// DMA RX Fifos
.bDmaRxData(dmarx_tdata_iop2),
.bDmaRxValid(dmarx_tvalid_iop2),
.bDmaRxReady(dmarx_tready_iop2),
.bDmaRxEnabled(),
.bDmaRxFifoFreeCnt(),
// User Register Port In
.bUserRegPortInWt(pcie_usr_reg_wr),
.bUserRegPortInRd(pcie_usr_reg_rd),
.bUserRegPortInAddr(pcie_usr_reg_addr),
.bUserRegPortInData(pcie_usr_reg_data_in),
.bUserRegPortInSize(pcie_usr_reg_len),
// User Register Port Out
.bUserRegPortOutData(pcie_usr_reg_data_out),
.bUserRegPortOutDataValid(pcie_usr_reg_rc),
.bUserRegPortOutReady(pcie_usr_reg_rdy),
// Chinch Register Port Out
.bChinchRegPortOutWt(chinch_reg_wr),
.bChinchRegPortOutRd(chinch_reg_rd),
.bChinchRegPortOutAddr({12'h0, chinch_reg_addr}),
.bChinchRegPortOutData({32'h0, chinch_reg_data_out}),
.bChinchRegPortOutSize(chinch_reg_len),
// User Register Port In
.bChinchRegPortInData(chinch_reg_data_in),
.bChinchRegPortInDataValid(chinch_reg_rc),
.bChinchRegPortInReady(chinch_reg_rdy),
// Level interrupt
.aIrq(aIrq)
);
//PCIe Express adapter logic to link to the AXI crossbar and the WB bus
x300_pcie_int #(
.DMA_STREAM_WIDTH(DMA_STREAM_WIDTH),
.NUM_TX_STREAMS(NUM_TX_STREAMS),
.NUM_RX_STREAMS(NUM_RX_STREAMS),
.REGPORT_ADDR_WIDTH(20),
.REGPORT_DATA_WIDTH(32),
.IOP2_MSG_WIDTH(IOP2_MSG_WIDTH),
.BUS_CLK_RATE(BUS_CLK_RATE)
) x300_pcie_int (
.ioport2_clk(ioport2_clk),
.bus_clk(bus_clk),
.bus_rst(bus_rst),
//DMA TX FIFOs (IoPort2 Clock Domain)
.dmatx_tdata_iop2(dmatx_tdata_iop2),
.dmatx_tvalid_iop2(dmatx_tvalid_iop2),
.dmatx_tready_iop2(dmatx_tready_iop2),
//DMA TX FIFOs (IoPort2 Clock Domain)
.dmarx_tdata_iop2(dmarx_tdata_iop2),
.dmarx_tvalid_iop2(dmarx_tvalid_iop2),
.dmarx_tready_iop2(dmarx_tready_iop2),
//PCIe User Regport
.pcie_usr_reg_wr(pcie_usr_reg_wr),
.pcie_usr_reg_rd(pcie_usr_reg_rd),
.pcie_usr_reg_addr(pcie_usr_reg_addr),
.pcie_usr_reg_data_in(pcie_usr_reg_data_in),
.pcie_usr_reg_len(pcie_usr_reg_len),
.pcie_usr_reg_data_out(pcie_usr_reg_data_out),
.pcie_usr_reg_rc(pcie_usr_reg_rc),
.pcie_usr_reg_rdy(pcie_usr_reg_rdy),
//Chinch Regport
.chinch_reg_wr(chinch_reg_wr),
.chinch_reg_rd(chinch_reg_rd),
.chinch_reg_addr(chinch_reg_addr),
.chinch_reg_data_out(chinch_reg_data_out),
.chinch_reg_len(chinch_reg_len),
.chinch_reg_data_in(chinch_reg_data_in[31:0]),
.chinch_reg_rc(chinch_reg_rc),
.chinch_reg_rdy(chinch_reg_rdy),
//DMA TX FIFO (Bus Clock Domain). Note: tuser is used for muxing.
.dmatx_tdata(dmatx_tdata),
.dmatx_tuser(dmatx_tuser),
.dmatx_tlast(dmatx_tlast),
.dmatx_tvalid(dmatx_tvalid),
.dmatx_tready(dmatx_tready),
//DMA RX FIFO (Bus Clock Domain). Note: tuser is used for muxing.
.dmarx_tdata(dmarx_tdata),
.dmarx_tuser(dmarx_tuser),
.dmarx_tlast(dmarx_tlast),
.dmarx_tvalid(dmarx_tvalid),
.dmarx_tready(dmarx_tready),
//Message FIFO Out (Bus Clock Domain)
.rego_tdata(o_iop2_msg_tdata),
.rego_tvalid(o_iop2_msg_tvalid),
.rego_tlast(o_iop2_msg_tlast),
.rego_tready(o_iop2_msg_tready),
//Message FIFO In (Bus Clock Domain)
.regi_tdata(i_iop2_msg_tdata),
.regi_tvalid(i_iop2_msg_tvalid),
.regi_tlast(i_iop2_msg_tlast),
.regi_tready(i_iop2_msg_tready),
//Misc
.misc_status({15'h0, aStc3Gpio7}),
.debug()
);
// The PCIe logic will tend to stay close to the physical IoPort2 pins
// so add an additional stage of pipelining to give the tool more routing
// slack. This is significantly help timing closure.
axi_fifo_short #(.WIDTH(DMA_STREAM_WIDTH+1+DMA_DEST_WIDTH)) pcii_pipeline_srl (
.clk(bus_clk), .reset(bus_rst), .clear(1'b0),
.i_tdata({dmatx_tuser, dmatx_tlast, dmatx_tdata}), .i_tvalid(dmatx_tvalid), .i_tready(dmatx_tready),
.o_tdata({pcii_tuser, pcii_tlast, pcii_tdata}), .o_tvalid(pcii_tvalid), .o_tready(pcii_tready),
.space(), .occupied());
axi_fifo_short #(.WIDTH(DMA_STREAM_WIDTH+1+DMA_DEST_WIDTH)) pcio_pipeline_srl (
.clk(bus_clk), .reset(bus_rst), .clear(1'b0),
.i_tdata({pcio_tuser, pcio_tlast, pcio_tdata}), .i_tvalid(pcio_tvalid), .i_tready(pcio_tready),
.o_tdata({dmarx_tuser, dmarx_tlast, dmarx_tdata}), .o_tvalid(dmarx_tvalid), .o_tready(dmarx_tready),
.space(), .occupied());
//////////////////////////////////////////////////////////////////////
//
// Configure SFP+ clocking
//
//////////////////////////////////////////////////////////////////////
`ifdef BUILD_1G
wire gige_refclk, gige_refclk_bufg;
one_gige_phy_clk_gen gige_clk_gen_i (
.refclk_p(ETH_CLK_p),
.refclk_n(ETH_CLK_n),
.refclk(gige_refclk),
.refclk_bufg(gige_refclk_bufg)
);
`endif
`ifdef BUILD_10G
wire xgige_refclk;
wire xgige_clk156;
wire xgige_dclk;
ten_gige_phy_clk_gen xgige_clk_gen_i (
.areset(global_rst | sw_rst[0]),
.refclk_p(XG_CLK_p),
.refclk_n(XG_CLK_n),
.refclk(xgige_refclk),
.clk156(xgige_clk156),
.dclk(xgige_dclk)
);
`ifdef BUILD_AURORA
wire aurora_refclk = xgige_refclk;
wire aurora_refclk_bufg = xgige_clk156;
wire aurora_init_clk = xgige_dclk;
`endif
`else
`ifdef BUILD_AURORA
wire aurora_refclk;
wire aurora_refclk_bufg;
wire aurora_init_clk;
aurora_phy_clk_gen aurora_clk_gen_i (
.areset(global_rst | sw_rst[0]),
.refclk_p(XG_CLK_p),
.refclk_n(XG_CLK_n),
.refclk(aurora_refclk),
.clk156(aurora_refclk_bufg),
.init_clk(aurora_init_clk)
);
`endif
`endif
wire sfp0_gt_refclk, sfp1_gt_refclk;
wire sfp0_gb_refclk, sfp1_gb_refclk;
wire sfp0_misc_clk, sfp1_misc_clk;
`ifdef SFP0_10GBE
assign sfp0_gt_refclk = xgige_refclk;
assign sfp0_gb_refclk = xgige_clk156;
assign sfp0_misc_clk = xgige_dclk;
`endif
`ifdef SFP0_1GBE
assign sfp0_gt_refclk = gige_refclk;
assign sfp0_gb_refclk = gige_refclk_bufg;
assign sfp0_misc_clk = gige_refclk_bufg;
`endif
`ifdef SFP0_AURORA
assign sfp0_gt_refclk = aurora_refclk;
assign sfp0_gb_refclk = aurora_refclk_bufg;
assign sfp0_misc_clk = aurora_init_clk;
`endif
`ifdef SFP1_10GBE
assign sfp1_gt_refclk = xgige_refclk;
assign sfp1_gb_refclk = xgige_clk156;
assign sfp1_misc_clk = xgige_dclk;
`endif
`ifdef SFP1_1GBE
assign sfp1_gt_refclk = gige_refclk;
assign sfp1_gb_refclk = gige_refclk_bufg;
assign sfp1_misc_clk = gige_refclk_bufg;
`endif
`ifdef SFP1_AURORA
assign sfp1_gt_refclk = aurora_refclk;
assign sfp1_gb_refclk = aurora_refclk_bufg;
assign sfp1_misc_clk = aurora_init_clk;
`endif
//////////////////////////////////////////////////////////////////////
//
// SFP+ PORT0
//
//////////////////////////////////////////////////////////////////////
wire [63:0] sfp0_rx_tdata, sfp0_tx_tdata;
wire [3:0] sfp0_rx_tuser, sfp0_tx_tuser;
wire sfp0_rx_tlast, sfp0_tx_tlast, sfp0_rx_tvalid, sfp0_tx_tvalid, sfp0_rx_tready, sfp0_tx_tready;
wire [15:0] sfp0_phy_status;
wire [31:0] sfp0_wb_dat_i;
wire [31:0] sfp0_wb_dat_o;
wire [15:0] sfp0_wb_adr;
wire sfp0_wb_ack, sfp0_wb_stb, sfp0_wb_cyc, sfp0_wb_we, sfp0_wb_int;
wire sfp0_link_up, sfp0_activity;
x300_sfpp_io_core #(
`ifdef SFP0_10GBE
.PROTOCOL("10GbE"),
`endif
`ifdef SFP0_1GBE
.PROTOCOL("1GbE"),
`endif
`ifdef SFP0_AURORA
.PROTOCOL("Aurora"),
`endif
.PORTNUM(8'd0)
) sfpp_io_i0 (
.areset(global_rst | sw_rst[0]),
.gt_refclk(sfp0_gt_refclk),
.gb_refclk(sfp0_gb_refclk),
.misc_clk(sfp0_misc_clk),
.bus_rst(bus_rst),
.bus_clk(bus_clk),
.bus_rst_div2(bus_rst_div2),
.bus_clk_div2(bus_clk_div2),
.txp(SFP0_TX_p),
.txn(SFP0_TX_n),
.rxp(SFP0_RX_p),
.rxn(SFP0_RX_n),
.sfpp_rxlos(SFPP0_RxLOS),
.sfpp_tx_fault(SFPP0_TxFault),
.sfpp_tx_disable(SFPP0_TxDisable),
.s_axis_tdata(sfp0_tx_tdata),
.s_axis_tuser(sfp0_tx_tuser),
.s_axis_tlast(sfp0_tx_tlast),
.s_axis_tvalid(sfp0_tx_tvalid),
.s_axis_tready(sfp0_tx_tready),
.m_axis_tdata(sfp0_rx_tdata),
.m_axis_tuser(sfp0_rx_tuser),
.m_axis_tlast(sfp0_rx_tlast),
.m_axis_tvalid(sfp0_rx_tvalid),
.m_axis_tready(sfp0_rx_tready),
.wb_adr_i(sfp0_wb_adr),
.wb_cyc_i(sfp0_wb_cyc),
.wb_dat_i(sfp0_wb_dat_o),
.wb_stb_i(sfp0_wb_stb),
.wb_we_i(sfp0_wb_we),
.wb_ack_o(sfp0_wb_ack),
.wb_dat_o(sfp0_wb_dat_i),
.wb_int_o(sfp0_wb_int),
.phy_status(sfp0_phy_status),
.link_up(sfp0_link_up),
.activity(sfp0_activity)
);
// LEDs are driven with negative logic.
assign LED_LINK2 = ~sfp0_link_up;
assign LED_ACT2 = ~sfp0_activity;
//////////////////////////////////////////////////////////////////////
//
// SFP+ PORT1
//
//////////////////////////////////////////////////////////////////////
wire [63:0] sfp1_rx_tdata, sfp1_tx_tdata;
wire [3:0] sfp1_rx_tuser, sfp1_tx_tuser;
wire sfp1_rx_tlast, sfp1_tx_tlast, sfp1_rx_tvalid, sfp1_tx_tvalid, sfp1_rx_tready, sfp1_tx_tready;
wire [15:0] sfp1_phy_status;
wire [31:0] sfp1_wb_dat_i;
wire [31:0] sfp1_wb_dat_o;
wire [15:0] sfp1_wb_adr;
wire sfp1_wb_ack, sfp1_wb_stb, sfp1_wb_cyc, sfp1_wb_we, sfp1_wb_int;
wire sfp1_link_up, sfp1_activity;
x300_sfpp_io_core #(
`ifdef SFP1_10GBE
.PROTOCOL("10GbE"),
`endif
`ifdef SFP1_1GBE
.PROTOCOL("1GbE"),
`endif
`ifdef SFP1_AURORA
.PROTOCOL("Aurora"),
`endif
.PORTNUM(8'd1)
) sfpp_io_i1 (
.areset(global_rst | sw_rst[0]),
.gt_refclk(sfp1_gt_refclk),
.gb_refclk(sfp1_gb_refclk),
.misc_clk(sfp1_misc_clk),
.bus_rst(bus_rst),
.bus_clk(bus_clk),
.bus_rst_div2(bus_rst_div2),
.bus_clk_div2(bus_clk_div2),
.txp(SFP1_TX_p),
.txn(SFP1_TX_n),
.rxp(SFP1_RX_p),
.rxn(SFP1_RX_n),
.sfpp_rxlos(SFPP1_RxLOS),
.sfpp_tx_fault(SFPP1_TxFault),
.sfpp_tx_disable(SFPP1_TxDisable),
.s_axis_tdata(sfp1_tx_tdata),
.s_axis_tuser(sfp1_tx_tuser),
.s_axis_tlast(sfp1_tx_tlast),
.s_axis_tvalid(sfp1_tx_tvalid),
.s_axis_tready(sfp1_tx_tready),
.m_axis_tdata(sfp1_rx_tdata),
.m_axis_tuser(sfp1_rx_tuser),
.m_axis_tlast(sfp1_rx_tlast),
.m_axis_tvalid(sfp1_rx_tvalid),
.m_axis_tready(sfp1_rx_tready),
.wb_adr_i(sfp1_wb_adr),
.wb_cyc_i(sfp1_wb_cyc),
.wb_dat_i(sfp1_wb_dat_o),
.wb_stb_i(sfp1_wb_stb),
.wb_we_i(sfp1_wb_we),
.wb_ack_o(sfp1_wb_ack),
.wb_dat_o(sfp1_wb_dat_i),
.wb_int_o(sfp1_wb_int),
.phy_status(sfp1_phy_status),
.link_up(sfp1_link_up),
.activity(sfp1_activity)
);
// LEDs are driven with negative logic.
assign LED_LINK1 = ~sfp1_link_up;
assign LED_ACT1 = ~sfp1_activity;
///////////////////////////////////////////////////////////////////////////////////
//
// Synchronize misc asynchronous signals
//
///////////////////////////////////////////////////////////////////////////////////
wire LMK_Holdover_sync, LMK_Lock_sync, LMK_Sync_sync;
wire LMK_Status0_sync, LMK_Status1_sync;
wire radio_clk_locked_sync;
wire adc_idlyctrl_rdy_sync;
//Sync all LMK_* signals to bus_clk
synchronizer #(.INITIAL_VAL(1'b0)) LMK_Holdover_sync_inst (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(LMK_Holdover), .out(LMK_Holdover_sync));
synchronizer #(.INITIAL_VAL(1'b0)) LMK_Lock_sync_inst (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(LMK_Lock), .out(LMK_Lock_sync));
synchronizer #(.INITIAL_VAL(1'b0)) LMK_Sync_sync_inst (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(LMK_Sync), .out(LMK_Sync_sync));
//The status bits (although in a bus) are really independent
synchronizer #(.INITIAL_VAL(1'b0)) LMK_Status0_sync_inst (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(LMK_Status[0]), .out(LMK_Status0_sync));
synchronizer #(.INITIAL_VAL(1'b0)) LMK_Status1_sync_inst (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(LMK_Status[1]), .out(LMK_Status1_sync));
synchronizer #(.INITIAL_VAL(1'b0)) radio_clk_locked_sync_inst (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(radio_clk_locked), .out(radio_clk_locked_sync));
synchronizer #(.INITIAL_VAL(1'b0)) adc_idlyctrl_rdy_sync_inst (
.clk(bus_clk), .rst(1'b0 /* no reset */), .in(adc_idlyctrl_rdy), .out(adc_idlyctrl_rdy_sync));
///////////////////////////////////////////////////////////////////////////////////
//
// Xilinx DDR3 Controller and PHY.
//
///////////////////////////////////////////////////////////////////////////////////
wire ddr3_axi_clk; // 1/4 DDR external clock rate (150MHz)
wire ddr3_axi_clk_x2; // 1/2 DDR external clock rate (300MHz)
wire ddr3_axi_rst; // Synchronized to ddr_sys_clk
wire ddr3_running; // DRAM calibration complete.
wire [11:0] device_temp;
// Slave Interface Write Address Ports
wire s_axi_awid;
wire [31:0] s_axi_awaddr;
wire [7:0] s_axi_awlen;
wire [2:0] s_axi_awsize;
wire [1:0] s_axi_awburst;
wire [0:0] s_axi_awlock;
wire [3:0] s_axi_awcache;
wire [2:0] s_axi_awprot;
wire [3:0] s_axi_awqos;
wire s_axi_awvalid;
wire s_axi_awready;
// Slave Interface Write Data Ports
wire [255:0] s_axi_wdata;
wire [31:0] s_axi_wstrb;
wire s_axi_wlast;
wire s_axi_wvalid;
wire s_axi_wready;
// Slave Interface Write Response Ports
wire s_axi_bready;
wire s_axi_bid;
wire [1:0] s_axi_bresp;
wire s_axi_bvalid;
// Slave Interface Read Address Ports
wire s_axi_arid;
wire [31:0] s_axi_araddr;
wire [7:0] s_axi_arlen;
wire [2:0] s_axi_arsize;
wire [1:0] s_axi_arburst;
wire [0:0] s_axi_arlock;
wire [3:0] s_axi_arcache;
wire [2:0] s_axi_arprot;
wire [3:0] s_axi_arqos;
wire s_axi_arvalid;
wire s_axi_arready;
// Slave Interface Read Data Ports
wire s_axi_rready;
wire s_axi_rid;
wire [255:0] s_axi_rdata;
wire [1:0] s_axi_rresp;
wire s_axi_rlast;
wire s_axi_rvalid;
wire ddr3_idelay_refclk;
reg ddr3_axi_rst_reg_n;
// Copied this reset circuit from example design.
always @(posedge ddr3_axi_clk)
ddr3_axi_rst_reg_n <= ~ddr3_axi_rst;
// Instantiate the DDR3 MIG core
ddr3_32bit u_ddr3_32bit (
// Memory interface ports
.ddr3_addr (ddr3_addr),
.ddr3_ba (ddr3_ba),
.ddr3_cas_n (ddr3_cas_n),
.ddr3_ck_n (ddr3_ck_n),
.ddr3_ck_p (ddr3_ck_p),
.ddr3_cke (ddr3_cke),
.ddr3_ras_n (ddr3_ras_n),
.ddr3_reset_n (ddr3_reset_n),
.ddr3_we_n (ddr3_we_n),
.ddr3_dq (ddr3_dq),
.ddr3_dqs_n (ddr3_dqs_n),
.ddr3_dqs_p (ddr3_dqs_p),
.ddr3_cs_n (ddr3_cs_n),
.ddr3_dm (ddr3_dm),
.ddr3_odt (ddr3_odt),
.init_calib_complete (ddr3_running),
.device_temp_i (device_temp),
// Application interface ports
.ui_clk (ddr3_axi_clk), // 150MHz clock out
.ui_addn_clk_0 (ddr3_axi_clk_x2), // 300MHz clock out
.ui_addn_clk_1 (ddr3_idelay_refclk),
.ui_addn_clk_2 (),
.ui_addn_clk_3 (),
.ui_addn_clk_4 (),
.clk_ref_i (ddr3_idelay_refclk),
.ui_clk_sync_rst (ddr3_axi_rst), // Active high Reset signal synchronised to 150MHz
.aresetn (ddr3_axi_rst_reg_n),
.app_sr_req (1'b0),
.app_sr_active (),
.app_ref_req (1'b0),
.app_ref_ack (),
.app_zq_req (1'b0),
.app_zq_ack (),
// Slave Interface Write Address Ports
.s_axi_awid (s_axi_awid),
.s_axi_awaddr (s_axi_awaddr),
.s_axi_awlen (s_axi_awlen),
.s_axi_awsize (s_axi_awsize),
.s_axi_awburst (s_axi_awburst),
.s_axi_awlock (s_axi_awlock),
.s_axi_awcache (s_axi_awcache),
.s_axi_awprot (s_axi_awprot),
.s_axi_awqos (s_axi_awqos),
.s_axi_awvalid (s_axi_awvalid),
.s_axi_awready (s_axi_awready),
// Slave Interface Write Data Ports
.s_axi_wdata (s_axi_wdata),
.s_axi_wstrb (s_axi_wstrb),
.s_axi_wlast (s_axi_wlast),
.s_axi_wvalid (s_axi_wvalid),
.s_axi_wready (s_axi_wready),
// Slave Interface Write Response Ports
.s_axi_bid (s_axi_bid),
.s_axi_bresp (s_axi_bresp),
.s_axi_bvalid (s_axi_bvalid),
.s_axi_bready (s_axi_bready),
// Slave Interface Read Address Ports
.s_axi_arid (s_axi_arid),
.s_axi_araddr (s_axi_araddr),
.s_axi_arlen (s_axi_arlen),
.s_axi_arsize (s_axi_arsize),
.s_axi_arburst (s_axi_arburst),
.s_axi_arlock (s_axi_arlock),
.s_axi_arcache (s_axi_arcache),
.s_axi_arprot (s_axi_arprot),
.s_axi_arqos (s_axi_arqos),
.s_axi_arvalid (s_axi_arvalid),
.s_axi_arready (s_axi_arready),
// Slave Interface Read Data Ports
.s_axi_rid (s_axi_rid),
.s_axi_rdata (s_axi_rdata),
.s_axi_rresp (s_axi_rresp),
.s_axi_rlast (s_axi_rlast),
.s_axi_rvalid (s_axi_rvalid),
.s_axi_rready (s_axi_rready),
// System Clock Ports
.sys_clk_i (sys_clk_i), // From external 100MHz source.
.sys_rst (global_rst)
);
// Temperature monitor module
mig_7series_v4_2_tempmon #(
.TEMP_MON_CONTROL("INTERNAL"), .XADC_CLK_PERIOD(8000 /* 125MHz clock period in ps */)
) tempmon_i (
.clk(bus_clk), .xadc_clk(ioport2_clk), .rst(bus_rst),
.device_temp_i(12'd0 /* ignored */), .device_temp(device_temp)
);
/////////////////////////////////////////////////////////////////////
//
// Daughterboard GPIO and Debug UART
//
//////////////////////////////////////////////////////////////////////
wire [31:0] db0_gpio_in, db0_gpio_out, db0_gpio_ddr;
wire [31:0] db1_gpio_in, db1_gpio_out, db1_gpio_ddr;
wire [31:0] fp_gpio_in, fp_gpio_out, fp_gpio_ddr;
wire debug_txd, debug_rxd;
gpio_atr_io #(.WIDTH(32)) gpio_atr_db0_inst (
.clk(radio_clk), .gpio_pins({DB0_TX_IO,DB0_RX_IO}),
.gpio_ddr(db0_gpio_ddr), .gpio_out(db0_gpio_out), .gpio_in(db0_gpio_in)
);
gpio_atr_io #(.WIDTH(32)) gpio_atr_db1_inst (
.clk(radio_clk), .gpio_pins({DB1_TX_IO,DB1_RX_IO}),
.gpio_ddr(db1_gpio_ddr), .gpio_out(db1_gpio_out), .gpio_in(db1_gpio_in)
);
`ifdef DEBUG_UART
gpio_atr_io #(.WIDTH(10)) fp_gpio_atr_inst (
.clk(radio_clk), .gpio_pins(FrontPanelGpio[9:0]),
.gpio_ddr(fp_gpio_ddr[9:0]), .gpio_out(fp_gpio_out[9:0]), .gpio_in(fp_gpio_in[9:0])
);
assign FrontPanelGpio[11] = debug_txd;
assign debug_rxd = FrontPanelGpio[10];
`else
gpio_atr_io #(.WIDTH(12)) fp_gpio_atr_inst (
.clk(radio_clk), .gpio_pins(FrontPanelGpio[11:0]),
.gpio_ddr(fp_gpio_ddr[11:0]), .gpio_out(fp_gpio_out[11:0]), .gpio_in(fp_gpio_in[11:0])
);
assign debug_rxd = 1'b0;
`endif
assign fp_gpio_in[31:12] = 20'h0;
///////////////////////////////////////////////////////////////////////////////////
//
// X300 Core
//
///////////////////////////////////////////////////////////////////////////////////
x300_core #( .BUS_CLK_RATE(BUS_CLK_RATE) ) x300_core (
.radio_clk(radio_clk), .radio_rst(radio_rst),
.bus_clk(bus_clk), .bus_rst(bus_rst), .sw_rst(sw_rst),
.bus_clk_div2(bus_clk_div2),
.ce_clk(ce_clk),
.ce_rst(ce_rst),
// Radio0 signals
.rx0(rx0), .tx0(tx0),
.db0_gpio_in(db0_gpio_in), .db0_gpio_out(db0_gpio_out), .db0_gpio_ddr(db0_gpio_ddr),
.fp_gpio_in(fp_gpio_in), .fp_gpio_out(fp_gpio_out), .fp_gpio_ddr(fp_gpio_ddr),
.sen0(sen0), .sclk0(sclk0), .mosi0(mosi0), .miso0(miso0),
.radio_led0(led0), .radio0_misc_out(radio0_misc_out), .radio0_misc_in(radio0_misc_in),
// Radio1 signals
.rx1(rx1), .tx1(tx1),
.db1_gpio_in(db1_gpio_in), .db1_gpio_out(db1_gpio_out), .db1_gpio_ddr(db1_gpio_ddr),
.sen1(sen1), .sclk1(sclk1), .mosi1(mosi1), .miso1(miso1),
.radio_led1(led1), .radio1_misc_out(radio1_misc_out), .radio1_misc_in(radio1_misc_in),
// I2C bus
.db_scl(DB_SCL), .db_sda(DB_SDA),
// External clock gen
.ext_ref_clk(ref_clk),
.clock_ref_sel(ClockRefSelect),
.clock_misc_opt({GPSDO_PWR_ENA, TCXO_ENA}),
.LMK_Status({LMK_Status1_sync, LMK_Status0_sync}), .LMK_Holdover(LMK_Holdover_sync), .LMK_Lock(LMK_Lock_sync), .LMK_Sync(LMK_Sync_sync),
.LMK_SEN(LMK_SEN), .LMK_SCLK(LMK_SCLK), .LMK_MOSI(LMK_MOSI),
.misc_clock_status({1'b0, adc_idlyctrl_rdy_sync, radio_clk_locked_sync}),
// SFP+ 0 flags
.SFPP0_SCL(SFPP0_SCL), .SFPP0_SDA(SFPP0_SDA), .SFPP0_ModAbs(SFPP0_ModAbs), .SFPP0_TxFault(SFPP0_TxFault),
.SFPP0_RxLOS(SFPP0_RxLOS), .SFPP0_RS1(SFPP0_RS1), .SFPP0_RS0(SFPP0_RS0),
// SFP+ 1 flags
.SFPP1_SCL(SFPP1_SCL), .SFPP1_SDA(SFPP1_SDA), .SFPP1_ModAbs(SFPP1_ModAbs), .SFPP1_TxFault(SFPP1_TxFault),
.SFPP1_RxLOS(SFPP1_RxLOS), .SFPP1_RS1(SFPP1_RS1), .SFPP1_RS0(SFPP1_RS0),
// SFP+ 0 data stream
.sfp0_tx_tdata(sfp0_tx_tdata), .sfp0_tx_tuser(sfp0_tx_tuser), .sfp0_tx_tlast(sfp0_tx_tlast),
.sfp0_tx_tvalid(sfp0_tx_tvalid), .sfp0_tx_tready(sfp0_tx_tready),
.sfp0_rx_tdata(sfp0_rx_tdata), .sfp0_rx_tuser(sfp0_rx_tuser), .sfp0_rx_tlast(sfp0_rx_tlast),
.sfp0_rx_tvalid(sfp0_rx_tvalid), .sfp0_rx_tready(sfp0_rx_tready),
.sfp0_phy_status(sfp0_phy_status),
// SFP+ 1 data stream
.sfp1_tx_tdata(sfp1_tx_tdata), .sfp1_tx_tuser(sfp1_tx_tuser), .sfp1_tx_tlast(sfp1_tx_tlast),
.sfp1_tx_tvalid(sfp1_tx_tvalid), .sfp1_tx_tready(sfp1_tx_tready),
.sfp1_rx_tdata(sfp1_rx_tdata), .sfp1_rx_tuser(sfp1_rx_tuser), .sfp1_rx_tlast(sfp1_rx_tlast),
.sfp1_rx_tvalid(sfp1_rx_tvalid), .sfp1_rx_tready(sfp1_rx_tready),
.sfp1_phy_status(sfp1_phy_status),
// Wishbone Slave Interface(s)
.sfp0_wb_dat_i(sfp0_wb_dat_i), .sfp0_wb_dat_o(sfp0_wb_dat_o), .sfp0_wb_adr(sfp0_wb_adr),
.sfp0_wb_sel(), .sfp0_wb_ack(sfp0_wb_ack), .sfp0_wb_stb(sfp0_wb_stb),
.sfp0_wb_cyc(sfp0_wb_cyc), .sfp0_wb_we(sfp0_wb_we), .sfp0_wb_int(sfp0_wb_int),
.sfp1_wb_dat_i(sfp1_wb_dat_i), .sfp1_wb_dat_o(sfp1_wb_dat_o), .sfp1_wb_adr(sfp1_wb_adr),
.sfp1_wb_sel(), .sfp1_wb_ack(sfp1_wb_ack), .sfp1_wb_stb(sfp1_wb_stb),
.sfp1_wb_cyc(sfp1_wb_cyc), .sfp1_wb_we(sfp1_wb_we), .sfp1_wb_int(sfp1_wb_int),
// Time
.pps(pps),.pps_select(pps_select), .pps_out_enb(pps_out_enb),
.ref_freq(ref_freq), .ref_freq_changed(ref_freq_changed),
// GPS Signals
.gps_txd(GPS_SER_IN), .gps_rxd(GPS_SER_OUT),
// Debug UART
.debug_rxd(debug_rxd), .debug_txd(debug_txd),
// Misc.
.led_misc(leds),
.xadc_readback({20'h0, device_temp}),
.debug0(), .debug1(), .debug2(),
// DRAM signals.
.ddr3_axi_clk (ddr3_axi_clk),
.ddr3_axi_clk_x2 (ddr3_axi_clk_x2),
.ddr3_axi_rst (ddr3_axi_rst),
// Slave Interface Write Address Ports
.ddr3_axi_awid (s_axi_awid),
.ddr3_axi_awaddr (s_axi_awaddr),
.ddr3_axi_awlen (s_axi_awlen),
.ddr3_axi_awsize (s_axi_awsize),
.ddr3_axi_awburst (s_axi_awburst),
.ddr3_axi_awlock (s_axi_awlock),
.ddr3_axi_awcache (s_axi_awcache),
.ddr3_axi_awprot (s_axi_awprot),
.ddr3_axi_awqos (s_axi_awqos),
.ddr3_axi_awvalid (s_axi_awvalid),
.ddr3_axi_awready (s_axi_awready),
// Slave Interface Write Data Ports
.ddr3_axi_wdata (s_axi_wdata),
.ddr3_axi_wstrb (s_axi_wstrb),
.ddr3_axi_wlast (s_axi_wlast),
.ddr3_axi_wvalid (s_axi_wvalid),
.ddr3_axi_wready (s_axi_wready),
// Slave Interface Write Response Ports
.ddr3_axi_bid (s_axi_bid),
.ddr3_axi_bresp (s_axi_bresp),
.ddr3_axi_bvalid (s_axi_bvalid),
.ddr3_axi_bready (s_axi_bready),
// Slave Interface Read Address Ports
.ddr3_axi_arid (s_axi_arid),
.ddr3_axi_araddr (s_axi_araddr),
.ddr3_axi_arlen (s_axi_arlen),
.ddr3_axi_arsize (s_axi_arsize),
.ddr3_axi_arburst (s_axi_arburst),
.ddr3_axi_arlock (s_axi_arlock),
.ddr3_axi_arcache (s_axi_arcache),
.ddr3_axi_arprot (s_axi_arprot),
.ddr3_axi_arqos (s_axi_arqos),
.ddr3_axi_arvalid (s_axi_arvalid),
.ddr3_axi_arready (s_axi_arready),
// Slave Interface Read Data Ports
.ddr3_axi_rid (s_axi_rid),
.ddr3_axi_rdata (s_axi_rdata),
.ddr3_axi_rresp (s_axi_rresp),
.ddr3_axi_rlast (s_axi_rlast),
.ddr3_axi_rvalid (s_axi_rvalid),
.ddr3_axi_rready (s_axi_rready),
// IoPort2 Message FIFOs
.o_iop2_msg_tdata (o_iop2_msg_tdata),
.o_iop2_msg_tvalid (o_iop2_msg_tvalid),
.o_iop2_msg_tlast (o_iop2_msg_tlast),
.o_iop2_msg_tready (o_iop2_msg_tready),
.i_iop2_msg_tdata (i_iop2_msg_tdata),
.i_iop2_msg_tvalid (i_iop2_msg_tvalid),
.i_iop2_msg_tlast (i_iop2_msg_tlast),
.i_iop2_msg_tready (i_iop2_msg_tready),
// PCIe DMA Data
.pcio_tdata (pcio_tdata),
.pcio_tuser (pcio_tuser),
.pcio_tlast (pcio_tlast),
.pcio_tvalid (pcio_tvalid),
.pcio_tready (pcio_tready),
.pcii_tdata (pcii_tdata),
.pcii_tuser (pcii_tuser),
.pcii_tlast (pcii_tlast),
.pcii_tvalid (pcii_tvalid),
.pcii_tready (pcii_tready)
);
assign {DB_ADC_RESET, DB_DAC_RESET,DB0_DAC_ENABLE} = radio0_misc_out[2:0];
assign {DB1_DAC_ENABLE} = radio1_misc_out[0]; //[2:1] unused
/////////////////////////////////////////////////////////////////////
//
// PUDC Workaround
//
//////////////////////////////////////////////////////////////////////
// This is a workaround for a silicon bug in Series 7 FPGA where a
// race condition with the reading of PUDC during the erase of the FPGA
// image cause glitches on output IO pins. This glitch happens even if
// you have PUDC correctly pulled high!! When PUDC is high the pull up
// resistor should never be enabled on the IO lines, however there is a
// race condition that causes this to not be the case.
//
// Workaround:
// - Define the PUDC pin in the XDC file with a pullup.
// - Implements an IBUF on the PUDC input and make sure that it does
// not get optimized out.
(* dont_touch = "true" *) wire fpga_pudc_b_buf;
IBUF pudc_ibuf_i (
.I(FPGA_PUDC_B),
.O(fpga_pudc_b_buf));
endmodule // x300
|