1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
-------------------------------------------------------------------------------
-- Title : N3xx serial DAC interface with arbiter
-- Project : White Rabbit
-------------------------------------------------------------------------------
-- File : spec_serial_dac.vhd
-- Author : Tomasz Wlostowski, modifications by dbaker
-- Company : CERN BE-Co-HT
-- Platform : fpga-generic
-- Standard : VHDL'87
-------------------------------------------------------------------------------
--
-- Copyright (c) 2011 CERN
--
-- This source file is free software; you can redistribute it
-- and/or modify it under the terms of the GNU Lesser General
-- Public License as published by the Free Software Foundation;
-- either version 2.1 of the License, or (at your option) any
-- later version.
--
-- This source is distributed in the hope that it will be
-- useful, but WITHOUT ANY WARRANTY; without even the implied
-- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
-- PURPOSE. See the GNU Lesser General Public License for more
-- details.
--
-- You should have received a copy of the GNU Lesser General
-- Public License along with this source; if not, download it
-- from http://www.gnu.org/licenses/lgpl-2.1.html
--
-------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
entity n3xx_serial_dac_arb is
generic(
g_invert_sclk : boolean;
g_num_extra_bits : integer
);
port(
clk_i : in std_logic;
rst_n_i : in std_logic;
val1_i : in std_logic_vector(15 downto 0);
load1_i : in std_logic;
val2_i : in std_logic_vector(15 downto 0);
load2_i : in std_logic;
dac_cs_n_o : out std_logic_vector(1 downto 0);
dac_clr_n_o : out std_logic;
dac_sclk_o : out std_logic;
dac_din_o : out std_logic);
end n3xx_serial_dac_arb;
architecture behavioral of n3xx_serial_dac_arb is
component n3xx_serial_dac
generic (
g_num_data_bits : integer;
g_num_extra_bits : integer;
g_num_cs_select : integer);
port (
clk_i : in std_logic;
rst_n_i : in std_logic;
value_i : in std_logic_vector(g_num_data_bits-1 downto 0);
cs_sel_i : in std_logic_vector(g_num_cs_select-1 downto 0);
load_i : in std_logic;
sclk_divsel_i : in std_logic_vector(2 downto 0);
dac_cs_n_o : out std_logic_vector(g_num_cs_select-1 downto 0);
dac_sclk_o : out std_logic;
dac_sdata_o : out std_logic;
xdone_o : out std_logic);
end component;
signal d1, d2 : std_logic_vector(15 downto 0) := (others=>'0');
signal d1_ready, d2_ready : std_logic := '0';
signal dac_data : std_logic_vector(15 downto 0) := (others=>'0');
signal dac_load : std_logic := '0';
signal dac_cs_sel : std_logic_vector(1 downto 0) := (others=>'0');
signal dac_done : std_logic := '0';
signal dac_sclk_int : std_logic := '0';
type t_state is (WAIT_DONE, LOAD_DAC, WAIT_DATA);
signal state : t_state;
signal trig0 : std_logic_vector(31 downto 0);
signal trig1 : std_logic_vector(31 downto 0);
signal trig2 : std_logic_vector(31 downto 0);
signal trig3 : std_logic_vector(31 downto 0);
signal CONTROL0 : std_logic_vector(35 downto 0);
begin -- behavioral
dac_clr_n_o <= '1';
U_DAC : n3xx_serial_dac
generic map (
g_num_data_bits => 16,
g_num_extra_bits => g_num_extra_bits,
g_num_cs_select => 2)
port map (
clk_i => clk_i,
rst_n_i => rst_n_i,
value_i => dac_data,
cs_sel_i => dac_cs_sel,
load_i => dac_load,
sclk_divsel_i => "001",
dac_cs_n_o => dac_cs_n_o,
dac_sclk_o => dac_sclk_int,
dac_sdata_o => dac_din_o,
xdone_o => dac_done);
p_drive_sclk: process(dac_sclk_int)
begin
if(g_invert_sclk) then
dac_sclk_o <= not dac_sclk_int;
else
dac_sclk_o <= dac_sclk_int;
end if;
end process;
process(clk_i)
begin
if rising_edge(clk_i) then
if rst_n_i = '0' then
d1 <= (others => '0');
d1_ready <= '0';
d2 <= (others => '0');
d2_ready <= '0';
dac_load <= '0';
dac_cs_sel <= (others => '0');
state <= WAIT_DATA;
else
if(load1_i = '1' or load2_i = '1') then
if(load1_i = '1') then
d1_ready <= '1';
d1 <= val1_i;
end if;
if(load2_i = '1') then
d2_ready <= '1';
d2 <= val2_i;
end if;
else
case state is
when WAIT_DATA =>
if(d1_ready = '1') then
dac_cs_sel <= "01";
dac_data <= d1;
dac_load <= '1';
d1_ready <= '0';
state <= LOAD_DAC;
elsif(d2_ready = '1') then
dac_cs_sel <= "10";
dac_data <= d2;
dac_load <= '1';
d2_ready <= '0';
state <= LOAD_DAC;
end if;
when LOAD_DAC=>
dac_load <= '0';
state <= WAIT_DONE;
when WAIT_DONE =>
if(dac_done = '1') then
state <= WAIT_DATA;
end if;
when others => null;
end case;
end if;
end if;
end if;
end process;
end behavioral;
|