1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
#
# Copyright 2017 Ettus Research, A National Instruments Company
# SPDX-License-Identifier: LGPL-3.0
#
# Timing analysis is performed in "/n3xx/doc/mb_timing.xlsx". See
# the spreadsheet for more details and explanations.
#*******************************************************************************
## Asynchronous clock groups
# All the clocks from the PS are async to everything else except clocks generated
# from themselves.
set_clock_groups -asynchronous -group [get_clocks clk100 -include_generated_clocks]
set_clock_groups -asynchronous -group [get_clocks clk40 -include_generated_clocks]
set_clock_groups -asynchronous -group [get_clocks bus_clk -include_generated_clocks]
set_clock_groups -asynchronous -group [get_clocks meas_clk_ref -include_generated_clocks]
#*******************************************************************************
## PPS Input Timing
# The external PPS is synchronous to the external reference clock, which is expected to
# be at 10 MHz. Given [setup, hold] of [5ns, 5ns] at the rear panel inputs of the N310,
# we have an adequate data valid window at the FPGA. However, since we overconstrain the
# reference clock to 25 MHz, we use the alternative period here for setup analysis.
set_input_delay -clock ref_clk -min 4.651 [get_ports REF_1PPS_IN]
set_input_delay -clock ref_clk -max [expr {$REF_CLK_PERIOD - 0.235}] [get_ports REF_1PPS_IN]
# The GPS PPS is also synchronous to the external reference clock (since there is a
# switch on the clock input outside the FPGA). Again, use the overconstrained period.
set_input_delay -clock ref_clk -min 1.234 [get_ports GPS_1PPS]
set_input_delay -clock ref_clk -max [expr {$REF_CLK_PERIOD - 2.111}] [get_ports GPS_1PPS]
#*******************************************************************************
## White Rabbit DAC
# Constrain the DIN and NSYNC bits around the clock output. No readback.
set MAX_SKEW 5
set SETUP_SKEW [expr {($MAX_SKEW / 2)-0.5}]
set HOLD_SKEW [expr {($MAX_SKEW / 2)+0.5}]
set PORT_LIST [get_ports {WB_DAC_DIN WB_DAC_NCLR WB_DAC_NSYNC WB_DAC_NLDAC}]
# Then add the output delay on each of the ports.
set_output_delay -clock [get_clocks wr_bus_clk] -max -$SETUP_SKEW $PORT_LIST
set_output_delay -add_delay -clock_fall -clock [get_clocks wr_bus_clk] -max -$SETUP_SKEW $PORT_LIST
set_output_delay -clock [get_clocks wr_bus_clk] -min $HOLD_SKEW $PORT_LIST
set_output_delay -add_delay -clock_fall -clock [get_clocks wr_bus_clk] -min $HOLD_SKEW $PORT_LIST
# Finally, make both the setup and hold checks use the same launching and latching edges.
set_multicycle_path -setup -to [get_clocks wr_bus_clk] -start 0
set_multicycle_path -hold -to [get_clocks wr_bus_clk] -1
# Remove analysis from the output "clock" pin. There are ways to do this using TCL, but
# they aren't supported in XDC files... so we do it the old fashioned way.
set_output_delay -clock [get_clocks async_out_clk] 0.000 $WR_OUT_CLK
set_max_delay -to $WR_OUT_CLK 50.000
set_min_delay -to $WR_OUT_CLK 0.000
#*******************************************************************************
## MB Async Ins/Outs
set ASYNC_MB_INPUTS [get_ports {SFP_*_LOS SFP_*_TXFAULT UNUSED_PIN_TDC*}]
set_input_delay -clock [get_clocks async_in_clk] 0.000 $ASYNC_MB_INPUTS
set_max_delay -from $ASYNC_MB_INPUTS 50.000
set_min_delay -from $ASYNC_MB_INPUTS 0.000
set ASYNC_MB_OUTPUTS [get_ports {*LED* SFP_*TXDISABLE UNUSED_PIN_TDC* \
FPGA_TEST[*]}]
set_output_delay -clock [get_clocks async_out_clk] 0.000 $ASYNC_MB_OUTPUTS
set_max_delay -to $ASYNC_MB_OUTPUTS 50.000
set_min_delay -to $ASYNC_MB_OUTPUTS 0.000
#*******************************************************************************
## Front Panel GPIO
# These bits are driven from the DB-A radio clock. Although they are received async in
# the outside world, they should be constrained in the FPGA to avoid any race
# conditions. The best way to do this is a skew constraint across all the bits.
set MAX_SKEW 10
set SETUP_SKEW [expr {($MAX_SKEW / 2)-0.5}]
set HOLD_SKEW [expr {($MAX_SKEW / 2)+0.5}]
set PORT_LIST [get_ports {FPGA_GPIO[*]}]
# Then add the output delay on each of the ports.
set_output_delay -clock [get_clocks fp_gpio_bus_clk] -max -$SETUP_SKEW $PORT_LIST
set_output_delay -add_delay -clock_fall -clock [get_clocks fp_gpio_bus_clk] -max -$SETUP_SKEW $PORT_LIST
set_output_delay -clock [get_clocks fp_gpio_bus_clk] -min $HOLD_SKEW $PORT_LIST
set_output_delay -add_delay -clock_fall -clock [get_clocks fp_gpio_bus_clk] -min $HOLD_SKEW $PORT_LIST
# Finally, make both the setup and hold checks use the same launching and latching edges.
set_multicycle_path -setup -to [get_clocks fp_gpio_bus_clk] -start 0
set_multicycle_path -hold -to [get_clocks fp_gpio_bus_clk] -1
# Remove analysis from the output "clock" pin. There are ways to do this using TCL, but
# they aren't supported in XDC files... so we do it the old fashioned way.
set_output_delay -clock [get_clocks async_out_clk] 0.000 $FP_GPIO_CLK
set_max_delay -to $FP_GPIO_CLK 50.000
set_min_delay -to $FP_GPIO_CLK 0.000
# All inputs on this interface are async.
set_input_delay -clock [get_clocks async_in_clk] 0.000 $PORT_LIST
set_max_delay -from $PORT_LIST 50.000
set_min_delay -from $PORT_LIST 0.000
#******************************************************************************
## Reset Sync False Path
set_false_path -to [get_pins */synchronizer_false_path/stages[0].value_reg[0]/D]
set_false_path -to [get_pins */synchronizer_false_path/stages[0].value_reg[0]/C]
|