1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
-------------------------------------------------------------------------------
--
-- File: ClockingRegs.vhd
-- Author: Daniel Jepson; mods by Humberto Jimenez
-- Original Project: N310; N32x
-- Date: 17 March 2016
--
-------------------------------------------------------------------------------
-- Copyright 2016-2018 Ettus Research, A National Instruments Company
-- SPDX-License-Identifier: LGPL-3.0
-------------------------------------------------------------------------------
--
-- Purpose:
--
-- Register access to the control/status bits and interfaces for the
-- RadioClocking module.
--
-- XML register definition is included below the module.
--
-------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
library work;
use work.PkgClockingRegMap.all;
use work.PkgRegs.all;
entity ClockingRegs is
port(
-- Async reset. Can be tied low if desired.
aReset : in boolean;
-- Sync reset... used in the same places as the async one.
bReset : in boolean;
-- Register Bus Clock -- this module connects the BusClk to PsClk, so it's limited
-- to 200 MHz!
BusClk : in std_logic;
bRegPortOut : out RegPortOut_t;
bRegPortIn : in RegPortIn_t;
-- Phase shift interface to the RadioClkMmcm.
-- There is a reset crossing here between the MMCM reset and aReset. The outgoing
-- crossing is safe because (a) the enable signal driven to the MMCM is a strobe-only
-- signal and (b) this interface should only be used when the MMCM is not in reset
-- (SW waits for the MMCM to be out of reset and locked before using this interface).
-- The only input signal, pPsDone, is double-synced in this file before being used.
-- This is OK (even though it is a strobe signal) because there is only a reset
-- crossing and not a clock domain crossing.
pPsInc : out std_logic;
pPsEn : out std_logic;
pPsDone : in std_logic;
-- PsClk is driven directly by BusClk, so p = b in the logic below!
PsClk : out std_logic;
-- Sync reset strobes from the register bus to the RadioClkMmcm.
bRadioClkMmcmReset : out std_logic;
-- Status of RadioClk MMCM lock to register bus.
aRadioClksValid : in std_logic;
bRadioClk1xEnabled : out std_logic;
bRadioClk2xEnabled : out std_logic;
bRadioClk3xEnabled : out std_logic;
bJesdRefClkPresent : in std_logic
);
end ClockingRegs;
architecture RTL of ClockingRegs is
--vhook_sigstart
--vhook_sigend
signal bRadioClkMmcmResetInt : std_logic := '1';
signal bRegPortOutLcl : RegPortOut_t := kRegPortOutZero;
signal bPsDone,
bPsEn,
bPsInc,
pPsDoneDs_ms,
pPsDoneDs : std_logic := '0';
signal bRadioClk1xEnabledInt,
bRadioClk2xEnabledInt,
bRadioClk3xEnabledInt,
bRadioClksValid_ms,
bRadioClksValid : std_logic := '0';
attribute ASYNC_REG : string;
attribute ASYNC_REG of bRadioClksValid_ms : signal is "true";
attribute ASYNC_REG of bRadioClksValid : signal is "true";
attribute ASYNC_REG of pPsDoneDs_ms : signal is "true";
attribute ASYNC_REG of pPsDoneDs : signal is "true";
begin
-- Locals to outputs.
PsClk <= BusClk;
pPsInc <= bPsInc;
pPsEn <= bPsEn;
bRadioClkMmcmReset <= bRadioClkMmcmResetInt;
bRadioClk1xEnabled <= bRadioClk1xEnabledInt;
bRadioClk2xEnabled <= bRadioClk2xEnabledInt;
bRadioClk3xEnabled <= bRadioClk3xEnabledInt;
-- Write Registers : ------------------------------------------------------------------
-- ------------------------------------------------------------------------------------
WriteRegisters: process(aReset, BusClk)
begin
if aReset then
bRadioClkMmcmResetInt <= '1';
bPsInc <= '0';
bPsEn <= '0';
bRadioClk1xEnabledInt <= '0';
bRadioClk2xEnabledInt <= '0';
bRadioClk3xEnabledInt <= '0';
elsif rising_edge(BusClk) then
if bReset then
bRadioClkMmcmResetInt <= '1';
bPsInc <= '0';
bPsEn <= '0';
bRadioClk1xEnabledInt <= '0';
bRadioClk2xEnabledInt <= '0';
bRadioClk3xEnabledInt <= '0';
else
-- Clear strobe
bPsEn <= '0';
if RegWrite(kPhaseShiftControl, bRegPortIn) then
if bRegPortIn.Data(kPsInc) = '1' then
bPsInc <= '1';
bPsEn <= '1';
elsif bRegPortIn.Data(kPsDec) = '1' then
bPsInc <= '0';
bPsEn <= '1';
end if;
end if;
if RegWrite(kRadioClkMmcm, bRegPortIn) then
-- Set/Clear pair
if bRegPortIn.Data(kRadioClkMmcmResetSet) = '1' then
bRadioClkMmcmResetInt <= '1';
elsif bRegPortIn.Data(kRadioClkMmcmResetClear) = '1' then
bRadioClkMmcmResetInt <= '0';
end if;
end if;
if RegWrite(kRadioClkEnables, bRegPortIn) then
bRadioClk1xEnabledInt <= bRegPortIn.Data(kRadioClk1xEnabled);
bRadioClk2xEnabledInt <= bRegPortIn.Data(kRadioClk2xEnabled);
bRadioClk3xEnabledInt <= bRegPortIn.Data(kRadioClk3xEnabled);
end if;
end if;
end if;
end process WriteRegisters;
DoubleSyncs : process (aReset, BusClk)
begin
if aReset then
bRadioClksValid_ms <= '0';
bRadioClksValid <= '0';
pPsDoneDs_ms <= '0';
pPsDoneDs <= '0';
elsif rising_edge(BusClk) then
-- No sync reset on double-syncs (however there are default assignments above)!
bRadioClksValid_ms <= aRadioClksValid;
bRadioClksValid <= bRadioClksValid_ms;
pPsDoneDs_ms <= pPsDone;
pPsDoneDs <= pPsDoneDs_ms;
end if;
end process;
-- Read Registers : -------------------------------------------------------------------
-- ------------------------------------------------------------------------------------
ReadRegisters: process(aReset, BusClk)
begin
if aReset then
bRegPortOutLcl <= kRegPortOutZero;
bPsDone <= '0';
elsif rising_edge(BusClk) then
if bReset then
bRegPortOutLcl <= kRegPortOutZero;
bPsDone <= '0';
else
-- Deassert strobes
bRegPortOutLcl.Data <= kRegPortDataZero;
-- All of these transactions only take one clock cycle, so we do not have to
-- de-assert the Ready signal (ever).
bRegPortOutLcl.Ready <= true;
-- Process the returned data from the phase shifter in the MMCM. Note that even
-- though the prefixes are different (p and b), we drive the PsClk from the BusClk
-- so this "crossing" is actually safe. Whenever the Done signal asserts (pPsDone -
-- pay attention to the prefix!) from the MMCM, we set a sticky bit to tell SW
-- that the shift operation is complete.
--
-- However, if pPsDone asserts at the same time that SW tries to read the register,
-- we should accurately report that the operation is indeed complete and then NOT
-- store the sticky (since it has already been read by SW). If a read does not come
-- through at the same time pPsDone is asserted, then we store the done state as a
-- sticky, bPsDone, which is only cleared by a read to this register.
if RegRead(kPhaseShiftControl, bRegPortIn) then
-- The phase shift is always enabled for the feedback clock in RadioClocking.vhd
bRegPortOutLcl.Data(kPsEnabledForFdbClk) <= '1';
bRegPortOutLcl.Data(kPsDone) <= bPsDone or pPsDoneDs;
bPsDone <= '0';
elsif pPsDoneDs = '1' then
bPsDone <= '1';
end if;
if RegRead(kRadioClkMmcm, bRegPortIn) then
bRegPortOutLcl.Data(kRadioClkMmcmLocked) <= bRadioClksValid;
end if;
if RegRead(kRadioClkEnables, bRegPortIn) then
bRegPortOutLcl.Data(kRadioClk1xEnabled) <= bRadioClk1xEnabledInt;
bRegPortOutLcl.Data(kRadioClk2xEnabled) <= bRadioClk2xEnabledInt;
bRegPortOutLcl.Data(kRadioClk3xEnabled) <= bRadioClk3xEnabledInt;
end if;
if RegRead(kMgtRefClkStatus, bRegPortIn) then
bRegPortOutLcl.Data(kJesdRefClkPresent) <= bJesdRefClkPresent;
end if;
end if;
end if;
end process ReadRegisters;
-- Local to output
bRegPortOut <= bRegPortOutLcl;
end RTL;
--XmlParse xml_on
--<regmap name="ClockingRegMap">
-- <group name="ClockingRegs">
--
-- <register name="RadioClkMmcm" size="32" offset="0x20" attributes="Readable|Writable">
-- <info>
-- </info>
-- <bitfield name="RadioClkMmcmLocked" range="4">
-- <info>
-- Reflects the locked status of the MMCM. '1' = locked. This bit is only valid
-- when the MMCM reset is de-asserted. Read-only.
-- </info>
-- </bitfield>
-- <bitfield name="RadioClkMmcmResetClear" range="1" attributes="Strobe">
-- <info>
-- Controls the reset to the Radio Clock MMCM. Strobe this bit to de-assert the
-- reset to the MMCM. Default is reset asserted. Write-only.
-- </info>
-- </bitfield>
-- <bitfield name="RadioClkMmcmResetSet" range="0" attributes="Strobe">
-- <info>
-- Controls the reset to the Radio Clock MMCM. Strobe this bit to assert the
-- reset to the MMCM. Default is reset asserted. Write-only.
-- </info>
-- </bitfield>
-- </register>
--
-- <register name="PhaseShiftControl" size="32" offset="0x24" attributes="Readable|Writable">
-- <info>
-- Phase Shift for RadioClkMmcm.
-- </info>
-- <bitfield name="PsDone" range="28">
-- <info>
-- This bit should set after a shift operation successfully completes.
-- Reading this register will clear this bit. Read-only.
-- </info>
-- </bitfield>
-- <bitfield name="PsInc" range="0" attributes="Strobe">
-- <info>
-- Strobe this bit to increment the phase. This bit is self-clearing and will
-- always return '0' when read. If PsInc and PsDec are asserted together,
-- the phase will increment.
-- </info>
-- </bitfield>
-- <bitfield name="PsDec" range="4" attributes="Strobe">
-- <info>
-- Strobe this bit to decrement the phase. This bit is self-clearing and will
-- always return '0' when read. If PsInc and PsDec are asserted together,
-- the phase will increment.
-- </info>
-- </bitfield>
-- <bitfield name="PsEnabledForFdbClk" range="16">
-- <info>
-- Read-only.
-- </info>
-- </bitfield>
-- </register>
--
-- <register name="RadioClkEnables" size="32" offset="0x28" attributes="Readable|Writable">
-- <info>
-- </info>
-- <bitfield name="RadioClk3xEnabled" range="8">
-- <info>
-- Set to '1' to enable the clock. Default disabled = '0'.
-- Do so ONLY after the MMCM is out of reset and locked!
-- </info>
-- </bitfield>
-- <bitfield name="RadioClk2xEnabled" range="4">
-- <info>
-- Set to '1' to enable the clock. Default disabled = '0'.
-- Do so ONLY after the MMCM is out of reset and locked!
-- </info>
-- </bitfield>
-- <bitfield name="RadioClk1xEnabled" range="0">
-- <info>
-- Set to '1' to enable the clock. Default disabled = '0'.
-- Do so ONLY after the MMCM is out of reset and locked!
-- </info>
-- </bitfield>
-- </register>
--
-- <register name="MgtRefClkStatus" size="32" offset="0x30" attributes="Readable">
-- <info>
-- </info>
-- <bitfield name="JesdRefClkPresent" range="0">
-- <info>
-- Live indicator of the MGT Reference Clock toggling and within expected
-- frequency limits. If this bit is de-asserted, then the JESD204b core will
-- not function correctly!
-- </info>
-- </bitfield>
-- </register>
--
-- </group>
--
--</regmap>
--XmlParse xml_off
|