1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
-------------------------------------------------------------------------------
--
-- File: PkgSetup.vhd
-- Author: Daniel Jepson
-- Original Project: N310
-- Date: 22 September 2017
--
-------------------------------------------------------------------------------
-- Copyright 2016-2017 Ettus Research, A National Instruments Company
-- SPDX-License-Identifier: GPL-3.0
-------------------------------------------------------------------------------
--
-- Purpose:
--
-- Default values for front end config and CPLD constants.
--
-- Contains the revision constants that must be bumped when the CPLD is updated.
--
-------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.PkgMgCpld.all;
package PkgSetup is
constant kRdWtWidth : integer := 1;
constant kAddrWidth : integer := 7;
constant kDataWidth : integer := 16;
constant kTotalWidth : integer := kRdWtWidth + kAddrWidth + kDataWidth;
subtype InterfaceData_t is std_logic_vector(kDataWidth-1 downto 0);
constant kSignature : InterfaceData_t := x"CAFE";
-- UPDATE THESE REVISIONS when making changes to the CPLD -----------------------------
-- ------------------------------------------------------------------------------------
constant kMinorRev : InterfaceData_t := std_logic_vector(to_unsigned(0,kDataWidth));
constant kMajorRev : InterfaceData_t := std_logic_vector(to_unsigned(5,kDataWidth));
-- Currently just the timestamp of the build time/date: yymmddhh
constant kBuildCode : std_logic_vector(31 downto 0) := X"18010408";
function kTxChDefault return InterfaceData_t;
function kTxChDefaultRun return InterfaceData_t;
function kRxChDefault0 return InterfaceData_t;
function kRxChDefault1 return InterfaceData_t;
function kRxChDefault0Run return InterfaceData_t;
function kRxChDefault1Run return InterfaceData_t;
function Tx2Switch2Mod(kCh1Val : std_logic_vector) return std_logic_vector;
function Tx2TrxMod (kCh1Val : std_logic_vector) return std_logic_vector;
function Rx2Switch1Mod(kCh1Val : std_logic_vector) return std_logic_vector;
function Rx2Switch2Mod(kCh1Val : std_logic_vector) return std_logic_vector;
function Rx2Switch3Mod(kCh1Val : std_logic_vector) return std_logic_vector;
function Rx2Switch4Mod(kCh1Val : std_logic_vector) return std_logic_vector;
function Rx2Switch5Mod(kCh1Val : std_logic_vector) return std_logic_vector;
function Rx2Switch6Mod(kCh1Val : std_logic_vector) return std_logic_vector;
end package;
package body PkgSetup is
function kTxChDefault return InterfaceData_t is
variable RetVal : InterfaceData_t := (others => '0');
begin
RetVal(kCh1SwTrxMsb downto kCh1SwTrx) := std_logic_vector(to_unsigned(kFromLowerFilterBankTxSw1, kCh1SwTrxSize));
RetVal(kCh1TxSw1Msb downto kCh1TxSw1) := std_logic_vector(to_unsigned(kShutdownTxSw1, kCh1TxSw1Size));
RetVal(kCh1TxSw2Msb downto kCh1TxSw2) := std_logic_vector(to_unsigned(kToTxFilterLp3400MHz, kCh1TxSw2Size));
RetVal(kCh1TxSw3 downto kCh1TxSw3) := std_logic_vector(to_unsigned(kToTxFilterBanks, kCh1TxSw3Size));
RetVal(kCh1TxLowbandMixerPathSelect) := '0';
RetVal(kCh1TxMixerEn) := '0';
RetVal(kCh1TxAmpEn) := '0';
RetVal(kCh1TxPaEn) := '0';
RetVal(kCh1TxLed) := '0';
RetVal(kCh1MykEnTx) := '1';
return RetVal;
end kTxChDefault;
function kTxChDefaultRun return InterfaceData_t is
variable RetVal : InterfaceData_t := (others => '0');
begin
RetVal(kCh1SwTrxMsb downto kCh1SwTrx) := std_logic_vector(to_unsigned(kFromLowerFilterBankTxSw1, kCh1SwTrxSize));
RetVal(kCh1TxSw1Msb downto kCh1TxSw1) := std_logic_vector(to_unsigned(kFromTxFilterLp3400MHz, kCh1TxSw1Size));
RetVal(kCh1TxSw2Msb downto kCh1TxSw2) := std_logic_vector(to_unsigned(kToTxFilterLp3400MHz, kCh1TxSw2Size));
RetVal(kCh1TxSw3 downto kCh1TxSw3) := std_logic_vector(to_unsigned(kToTxFilterBanks, kCh1TxSw3Size));
RetVal(kCh1TxLowbandMixerPathSelect) := '0';
RetVal(kCh1TxMixerEn) := '0';
RetVal(kCh1TxAmpEn) := '1';
RetVal(kCh1TxPaEn) := '1';
RetVal(kCh1TxLed) := '1';
RetVal(kCh1MykEnTx) := '1';
return RetVal;
end kTxChDefaultRun;
function kRxChDefault0 return InterfaceData_t is
variable RetVal : InterfaceData_t := (others => '0');
begin
RetVal(kCh1RxSw1Msb downto kCh1RxSw1) := std_logic_vector(to_unsigned(kRx2Input, kCh1RxSw1Size));
RetVal(kCh1RxSw2Msb downto kCh1RxSw2) := std_logic_vector(to_unsigned(kShutdownSw2, kCh1RxSw2Size));
RetVal(kCh1RxSw3Msb downto kCh1RxSw3) := std_logic_vector(to_unsigned(kShutdownSw3, kCh1RxSw3Size));
RetVal(kCh1RxSw4Msb downto kCh1RxSw4) := std_logic_vector(to_unsigned(kFilter2100x2850MHzFrom, kCh1RxSw4Size));
RetVal(kCh1RxSw5Msb downto kCh1RxSw5) := std_logic_vector(to_unsigned(kFilter0490LpMHzFrom, kCh1RxSw5Size));
return RetVal;
end kRxChDefault0;
function kRxChDefault1 return InterfaceData_t is
variable RetVal : InterfaceData_t := (others => '0');
begin
RetVal(kCh1RxSw6Msb downto kCh1RxSw6) := std_logic_vector(to_unsigned(kUpperFilterBankFromSwitch4, kCh1RxSw6Size));
RetVal(kCh1RxLowbandMixerPathSelect) := '0';
RetVal(kCh1RxMixerEn) := '0';
RetVal(kCh1RxAmpEn) := '0';
RetVal(kCh1RxLna1En) := '0';
RetVal(kCh1RxLna2En) := '0';
RetVal(kCh1Rx2Led) := '0';
RetVal(kCh1RxLed) := '0';
RetVal(kCh1MykEnRx) := '1';
return RetVal;
end kRxChDefault1;
function kRxChDefault0Run return InterfaceData_t is
variable RetVal : InterfaceData_t := (others => '0');
begin
RetVal(kCh1RxSw1Msb downto kCh1RxSw1) := std_logic_vector(to_unsigned(kRx2Input, kCh1RxSw1Size));
RetVal(kCh1RxSw2Msb downto kCh1RxSw2) := std_logic_vector(to_unsigned(kLowerFilterBankToSwitch3, kCh1RxSw2Size));
RetVal(kCh1RxSw3Msb downto kCh1RxSw3) := std_logic_vector(to_unsigned(kFilter2100x2850MHz, kCh1RxSw3Size));
RetVal(kCh1RxSw4Msb downto kCh1RxSw4) := std_logic_vector(to_unsigned(kFilter2100x2850MHzFrom, kCh1RxSw4Size));
RetVal(kCh1RxSw5Msb downto kCh1RxSw5) := std_logic_vector(to_unsigned(kFilter0490LpMHzFrom, kCh1RxSw5Size));
return RetVal;
end kRxChDefault0Run;
function kRxChDefault1Run return InterfaceData_t is
variable RetVal : InterfaceData_t := (others => '0');
begin
RetVal(kCh1RxSw6Msb downto kCh1RxSw6) := std_logic_vector(to_unsigned(kUpperFilterBankFromSwitch4, kCh1RxSw6Size));
RetVal(kCh1RxLowbandMixerPathSelect) := '0';
RetVal(kCh1RxMixerEn) := '0';
RetVal(kCh1RxAmpEn) := '1';
RetVal(kCh1RxLna1En) := '1';
RetVal(kCh1RxLna2En) := '1';
RetVal(kCh1Rx2Led) := '1'; -- turn on a LED for grins
RetVal(kCh1RxLed) := '0';
RetVal(kCh1MykEnRx) := '1';
return RetVal;
end kRxChDefault1Run;
function Tx2Switch2Mod(kCh1Val : std_logic_vector) return std_logic_vector is
variable RetVal : std_logic_vector(kCh1Val'range) := (others => '0');
begin
-- Encoding for this switch is one-hot, so we just flip around the bits here.
RetVal(kCh1Val'low + 0) := kCh1Val(kCh1Val'low + 0);
RetVal(kCh1Val'low + 3) := kCh1Val(kCh1Val'low + 1);
RetVal(kCh1Val'low + 1) := kCh1Val(kCh1Val'low + 2);
RetVal(kCh1Val'low + 2) := kCh1Val(kCh1Val'low + 3);
return RetVal;
end Tx2Switch2Mod;
function Tx2TrxMod(kCh1Val : std_logic_vector) return std_logic_vector is
variable RetVal : std_logic_vector(kCh1Val'range) := (others => '0');
begin
if kCh1Val = "00" then RetVal := "00";
elsif kCh1Val = "01" then RetVal := "10";
elsif kCh1Val = "10" then RetVal := "01";
elsif kCh1Val = "11" then RetVal := "11";
else RetVal := "00"; end if;
return RetVal;
end Tx2TrxMod;
function Rx2Switch1Mod(kCh1Val : std_logic_vector) return std_logic_vector is
variable RetVal : std_logic_vector(kCh1Val'range) := (others => '0');
begin
-- Encoding for this switch is binary, so we need to mux.
if kCh1Val = "00" then RetVal := "01";
elsif kCh1Val = "01" then RetVal := "00";
elsif kCh1Val = "10" then RetVal := "11";
elsif kCh1Val = "11" then RetVal := "10";
else RetVal := "00"; end if;
return RetVal;
end Rx2Switch1Mod;
function Rx2Switch2Mod(kCh1Val : std_logic_vector) return std_logic_vector is
variable RetVal : std_logic_vector(kCh1Val'range) := (others => '0');
begin
-- Encoding for this switch is binary, so we need to mux.
if kCh1Val = "00" then RetVal := "00";
elsif kCh1Val = "01" then RetVal := "11";
elsif kCh1Val = "10" then RetVal := "10";
elsif kCh1Val = "11" then RetVal := "01";
else RetVal := "00"; end if;
return RetVal;
end Rx2Switch2Mod;
function Rx2Switch3Mod(kCh1Val : std_logic_vector) return std_logic_vector is
variable RetVal : std_logic_vector(kCh1Val'range) := (others => '0');
begin
-- Encoding for this switch is binary, so we need to mux.
if kCh1Val = "000" then RetVal := "100";
elsif kCh1Val = "001" then RetVal := "101";
elsif kCh1Val = "010" then RetVal := "110";
elsif kCh1Val = "011" then RetVal := "011";
elsif kCh1Val = "100" then RetVal := "001";
elsif kCh1Val = "101" then RetVal := "000";
elsif kCh1Val = "110" then RetVal := "010";
elsif kCh1Val = "111" then RetVal := "111";
else RetVal := "000"; end if;
return RetVal;
end Rx2Switch3Mod;
function Rx2Switch4Mod(kCh1Val : std_logic_vector) return std_logic_vector is
variable RetVal : std_logic_vector(kCh1Val'range) := (others => '0');
begin
-- Encoding for this switch is one-hot, so we just flip around the bits here.
RetVal(kCh1Val'low + 2) := kCh1Val(kCh1Val'low + 0);
RetVal(kCh1Val'low + 1) := kCh1Val(kCh1Val'low + 1);
RetVal(kCh1Val'low + 0) := kCh1Val(kCh1Val'low + 2);
return RetVal;
end Rx2Switch4Mod;
function Rx2Switch5Mod(kCh1Val : std_logic_vector) return std_logic_vector is
variable RetVal : std_logic_vector(kCh1Val'range) := (others => '0');
begin
-- Encoding for this switch is one-hot, so we just flip around the bits here.
RetVal(kCh1Val'low + 1) := kCh1Val(kCh1Val'low + 0);
RetVal(kCh1Val'low + 0) := kCh1Val(kCh1Val'low + 1);
RetVal(kCh1Val'low + 3) := kCh1Val(kCh1Val'low + 2);
RetVal(kCh1Val'low + 2) := kCh1Val(kCh1Val'low + 3);
return RetVal;
end Rx2Switch5Mod;
function Rx2Switch6Mod(kCh1Val : std_logic_vector) return std_logic_vector is
variable RetVal : std_logic_vector(kCh1Val'range) := (others => '0');
begin
-- Encoding for this switch is one-hot, so we just flip around the bits here.
RetVal(kCh1Val'low + 2) := kCh1Val(kCh1Val'low + 0);
RetVal(kCh1Val'low + 1) := kCh1Val(kCh1Val'low + 1);
RetVal(kCh1Val'low + 0) := kCh1Val(kCh1Val'low + 2);
return RetVal;
end Rx2Switch6Mod;
end package body;
|