1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
|
/////////////////////////////////////////////////////////////////////
//
// Copyright 2018 Ettus Research, A National Instruments Company
// Copyright 2019 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0
//
// Module: e31x_core
// Description:
// - Motherboard Registers
// - Crossbar
// - Noc Block Radio
// - Noc Block Dram Fifo
// - Radio Front End control
//
/////////////////////////////////////////////////////////////////////
`default_nettype none
module e31x_core #(
parameter REG_DWIDTH = 32, // Width of the AXI4-Lite data bus (must be 32 or 64)
parameter REG_AWIDTH = 32, // Width of the address bus
parameter BUS_CLK_RATE = 200000000, // bus_clk rate
parameter NUM_SFP_PORTS = 0, // Number of SFP Ports
parameter NUM_RADIOS = 1,
parameter NUM_CHANNELS_PER_RADIO = 2,
parameter NUM_CHANNELS = 2,
parameter NUM_DBOARDS = 1,
parameter NUM_CHANNELS_PER_DBOARD = 2,
parameter FP_GPIO_WIDTH = 8, // Front panel GPIO width
parameter DB_GPIO_WIDTH = 16, // Daughterboard GPIO width
parameter CHDR_WIDTH = 16'd64 ,
parameter RFNOC_PROTOVER = {8'd1, 8'd0}
)(
// Clocks and resets
input wire radio_clk,
input wire radio_rst,
input wire bus_clk,
input wire bus_rst,
// Motherboard Registers: AXI lite interface
input wire s_axi_aclk,
input wire s_axi_aresetn,
input wire [REG_AWIDTH-1:0] s_axi_awaddr,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [REG_DWIDTH-1:0] s_axi_wdata,
input wire [REG_DWIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [1:0] s_axi_bresp,
output wire s_axi_bvalid,
input wire s_axi_bready,
input wire [REG_AWIDTH-1:0] s_axi_araddr,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [REG_DWIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rvalid,
input wire s_axi_rready,
// PPS and Clock Control
input wire pps_refclk,
input wire refclk_locked,
output reg [1:0] pps_select,
// PS GPIO source
input wire [FP_GPIO_WIDTH-1:0] ps_gpio_out,
input wire [FP_GPIO_WIDTH-1:0] ps_gpio_tri,
output wire [FP_GPIO_WIDTH-1:0] ps_gpio_in,
// Front Panel GPIO
input wire [FP_GPIO_WIDTH-1:0] fp_gpio_in,
output wire [FP_GPIO_WIDTH-1:0] fp_gpio_tri,
output wire [FP_GPIO_WIDTH-1:0] fp_gpio_out,
// Radio GPIO control
output wire [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_out_flat,
output wire [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_ddr_flat,
input wire [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_in_flat,
input wire [DB_GPIO_WIDTH*NUM_CHANNELS-1:0] db_gpio_fab_flat,
// TX/RX LEDs
output wire [32*NUM_CHANNELS-1:0] leds_flat,
// Radio ATR
output wire [NUM_CHANNELS-1:0] rx_atr,
output wire [NUM_CHANNELS-1:0] tx_atr,
// Radio Data
input wire [NUM_CHANNELS-1:0] rx_stb,
input wire [NUM_CHANNELS-1:0] tx_stb,
input wire [32*NUM_CHANNELS-1:0] rx,
output wire [32*NUM_CHANNELS-1:0] tx,
// DMA xport adapter to PS
input wire [63:0] s_dma_tdata,
input wire [3:0] s_dma_tuser,
input wire s_dma_tlast,
output wire s_dma_tready,
input wire s_dma_tvalid,
output wire [63:0] m_dma_tdata,
output wire [3:0] m_dma_tdest,
output wire m_dma_tlast,
input wire m_dma_tready,
output wire m_dma_tvalid,
// Misc
input wire [31:0] build_datestamp,
input wire [31:0] sfp_ports_info,
input wire [31:0] dboard_status,
input wire [31:0] xadc_readback,
output reg [31:0] fp_gpio_ctrl,
output reg [31:0] dboard_ctrl,
output reg [15:0] device_id
);
/////////////////////////////////////////////////////////////////////////////////
//
// FPGA Compatibility Number
// Rules for modifying compat number:
// - Major is updated when the FPGA is changed and requires a software
// change as a result.
// - Minor is updated when a new feature is added to the FPGA that does not
// break software compatibility.
//
/////////////////////////////////////////////////////////////////////////////////
localparam [15:0] COMPAT_MAJOR = 16'd5;
localparam [15:0] COMPAT_MINOR = 16'd0;
/////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
//
// Motherboard Registers
//
/////////////////////////////////////////////////////////////////////////////////
// Register base
localparam REG_BASE_MISC = 14'h0;
localparam REG_BASE_TIMEKEEPER = 14'h1000;
// Misc Registers
localparam REG_COMPAT_NUM = REG_BASE_MISC + 14'h00;
localparam REG_DATESTAMP = REG_BASE_MISC + 14'h04;
localparam REG_GIT_HASH = REG_BASE_MISC + 14'h08;
localparam REG_SCRATCH = REG_BASE_MISC + 14'h0C;
localparam REG_DEVICE_ID = REG_BASE_MISC + 14'h10;
localparam REG_RFNOC_INFO = REG_BASE_MISC + 14'h14;
localparam REG_CLOCK_CTRL = REG_BASE_MISC + 14'h18;
localparam REG_XADC_READBACK = REG_BASE_MISC + 14'h1C;
localparam REG_BUS_CLK_RATE = REG_BASE_MISC + 14'h20;
localparam REG_BUS_CLK_COUNT = REG_BASE_MISC + 14'h24;
localparam REG_SFP_PORT_INFO = REG_BASE_MISC + 14'h28;
localparam REG_FP_GPIO_CTRL = REG_BASE_MISC + 14'h2C;
localparam REG_FP_GPIO_MASTER = REG_BASE_MISC + 14'h30;
localparam REG_FP_GPIO_RADIO_SRC = REG_BASE_MISC + 14'h34;
localparam REG_DBOARD_CTRL = REG_BASE_MISC + 14'h40;
localparam REG_DBOARD_STATUS = REG_BASE_MISC + 14'h44;
localparam REG_NUM_TIMEKEEPERS = REG_BASE_MISC + 14'h48;
localparam NUM_TIMEKEEPERS = 16'd1;
wire m_ctrlport_req_wr;
wire m_ctrlport_req_rd;
wire [19:0] m_ctrlport_req_addr;
wire [31:0] m_ctrlport_req_data;
wire m_ctrlport_req_has_time;
wire [63:0] m_ctrlport_req_time;
wire m_ctrlport_resp_ack;
wire [31:0] m_ctrlport_resp_data;
reg [31:0] fp_gpio_master_reg = 32'h0;
reg [31:0] fp_gpio_src_reg = 32'h0;
wire reg_wr_req;
wire [REG_AWIDTH-1:0] reg_wr_addr;
wire [REG_DWIDTH-1:0] reg_wr_data;
wire reg_rd_req;
wire [REG_AWIDTH-1:0] reg_rd_addr;
wire reg_rd_resp;
wire [REG_DWIDTH-1:0] reg_rd_data;
reg reg_rd_resp_glob;
reg [REG_DWIDTH-1:0] reg_rd_data_glob;
wire reg_rd_resp_tk;
wire [REG_DWIDTH-1:0] reg_rd_data_tk;
reg [31:0] scratch_reg = 32'h0;
reg [31:0] bus_counter = 32'h0;
always @(posedge bus_clk) begin
if (bus_rst)
bus_counter <= 32'd0;
else
bus_counter <= bus_counter + 32'd1;
end
// Regport Master to convert AXI4-Lite to regport
axil_regport_master #(
.DWIDTH (REG_DWIDTH), // Width of the AXI4-Lite data bus (must be 32 or 64)
.AWIDTH (REG_AWIDTH), // Width of the address bus
.WRBASE (0), // Write address base
.RDBASE (0), // Read address base
.TIMEOUT (10) // log2(timeout). Read will timeout after (2^TIMEOUT - 1) cycles
) core_regport_master_i (
// Clock and reset
.s_axi_aclk (s_axi_aclk),
.s_axi_aresetn (s_axi_aresetn),
// AXI4-Lite: Write address port (domain: s_axi_aclk)
.s_axi_awaddr (s_axi_awaddr),
.s_axi_awvalid (s_axi_awvalid),
.s_axi_awready (s_axi_awready),
// AXI4-Lite: Write data port (domain: s_axi_aclk)
.s_axi_wdata (s_axi_wdata),
.s_axi_wstrb (s_axi_wstrb),
.s_axi_wvalid (s_axi_wvalid),
.s_axi_wready (s_axi_wready),
// AXI4-Lite: Write response port (domain: s_axi_aclk)
.s_axi_bresp (s_axi_bresp),
.s_axi_bvalid (s_axi_bvalid),
.s_axi_bready (s_axi_bready),
// AXI4-Lite: Read address port (domain: s_axi_aclk)
.s_axi_araddr (s_axi_araddr),
.s_axi_arvalid (s_axi_arvalid),
.s_axi_arready (s_axi_arready),
// AXI4-Lite: Read data port (domain: s_axi_aclk)
.s_axi_rdata (s_axi_rdata),
.s_axi_rresp (s_axi_rresp),
.s_axi_rvalid (s_axi_rvalid),
.s_axi_rready (s_axi_rready),
// Register port: Write port (domain: reg_clk)
.reg_clk (bus_clk),
.reg_wr_req (reg_wr_req),
.reg_wr_addr (reg_wr_addr),
.reg_wr_data (reg_wr_data),
.reg_wr_keep (/*unused*/),
// Register port: Read port (domain: reg_clk)
.reg_rd_req (reg_rd_req),
.reg_rd_addr (reg_rd_addr),
.reg_rd_resp (reg_rd_resp),
.reg_rd_data (reg_rd_data)
);
//--------------------------------------------------------------------
// Global Registers
// -------------------------------------------------------------------
// Write Registers
always @ (posedge bus_clk) begin
if (bus_rst) begin
scratch_reg <= 32'h0;
pps_select <= 2'b01; // Default to internal
fp_gpio_ctrl <= 32'h9; // Default to OFF - 4'b1001
dboard_ctrl <= 32'h1; // Default to mimo
device_id <= 16'h0;
end else if (reg_wr_req) begin
case (reg_wr_addr)
REG_DEVICE_ID: begin
device_id <= reg_wr_data[15:0];
end
REG_FP_GPIO_MASTER: begin
fp_gpio_master_reg <= reg_wr_data;
end
REG_FP_GPIO_RADIO_SRC: begin
fp_gpio_src_reg <= reg_wr_data;
end
REG_SCRATCH: begin
scratch_reg <= reg_wr_data;
end
REG_CLOCK_CTRL: begin
pps_select <= reg_wr_data[1:0];
end
REG_FP_GPIO_CTRL: begin
fp_gpio_ctrl <= reg_wr_data;
end
REG_DBOARD_CTRL: begin
dboard_ctrl <= reg_wr_data;
end
endcase
end
end
// Read Registers
always @ (posedge bus_clk) begin
if (bus_rst) begin
reg_rd_resp_glob <= 1'b0;
end
else begin
if (reg_rd_req) begin
reg_rd_resp_glob <= 1'b1;
case (reg_rd_addr)
REG_DEVICE_ID:
reg_rd_data_glob <= device_id;
REG_RFNOC_INFO:
reg_rd_data_glob <= {CHDR_WIDTH[15:0], RFNOC_PROTOVER[15:0]};
REG_COMPAT_NUM:
reg_rd_data_glob <= {COMPAT_MAJOR[15:0], COMPAT_MINOR[15:0]};
REG_FP_GPIO_CTRL:
reg_rd_data_glob <= fp_gpio_ctrl;
REG_FP_GPIO_MASTER:
reg_rd_data_glob <= fp_gpio_master_reg;
REG_FP_GPIO_RADIO_SRC:
reg_rd_data_glob <= fp_gpio_src_reg;
REG_DATESTAMP:
reg_rd_data_glob <= build_datestamp;
REG_GIT_HASH:
reg_rd_data_glob <= `GIT_HASH;
REG_SCRATCH:
reg_rd_data_glob <= scratch_reg;
REG_CLOCK_CTRL: begin
reg_rd_data_glob <= 32'b0;
reg_rd_data_glob[1:0] <= pps_select;
reg_rd_data_glob[3] <= refclk_locked;
end
REG_XADC_READBACK:
reg_rd_data_glob <= xadc_readback;
REG_BUS_CLK_RATE:
reg_rd_data_glob <= BUS_CLK_RATE;
REG_BUS_CLK_COUNT:
reg_rd_data_glob <= bus_counter;
REG_SFP_PORT_INFO:
reg_rd_data_glob <= sfp_ports_info;
REG_DBOARD_CTRL:
reg_rd_data_glob <= dboard_ctrl;
REG_DBOARD_STATUS:
reg_rd_data_glob <= dboard_status;
REG_NUM_TIMEKEEPERS:
reg_rd_data_glob <= NUM_TIMEKEEPERS;
default:
reg_rd_resp_glob <= 1'b0;
endcase
end
else if (reg_rd_resp_glob) begin
reg_rd_resp_glob <= 1'b0;
end
end
end
wire pps_radioclk;
// Synchronize the PPS signal to the radio clock domain
synchronizer pps_radio_sync (
.clk(radio_clk), .rst(1'b0), .in(pps_refclk), .out(pps_radioclk)
);
/////////////////////////////////////////////////////////////////////////////
//
// DMA Transport Adapter
//
/////////////////////////////////////////////////////////////////////////////
wire [63:0] dmao_tdata;
wire dmao_tlast;
wire dmao_tvalid;
wire dmao_tready;
wire [63:0] dmai_tdata;
wire dmai_tlast;
wire dmai_tvalid;
wire dmai_tready;
liberio_chdr64_adapter #(
.DMA_ID_WIDTH (4)
) dma_xport_adapter (
.clk (bus_clk),
.rst (bus_rst),
.device_id (device_id),
// From DMA engine to core
.s_dma_tdata (s_dma_tdata),
.s_dma_tuser (s_dma_tuser),
.s_dma_tlast (s_dma_tlast),
.s_dma_tvalid (s_dma_tvalid),
.s_dma_tready (s_dma_tready),
// From core to DMA engine
.m_dma_tdata (m_dma_tdata),
.m_dma_tuser (m_dma_tdest),
.m_dma_tlast (m_dma_tlast),
.m_dma_tvalid (m_dma_tvalid),
.m_dma_tready (m_dma_tready),
// CHDR buses
.s_chdr_tdata (dmao_tdata),
.s_chdr_tlast (dmao_tlast),
.s_chdr_tvalid (dmao_tvalid),
.s_chdr_tready (dmao_tready),
.m_chdr_tdata (dmai_tdata),
.m_chdr_tlast (dmai_tlast),
.m_chdr_tvalid (dmai_tvalid),
.m_chdr_tready (dmai_tready)
);
/////////////////////////////////////////////////////////////////////////////
//
// Radio Daughter board and Front End Control
//
/////////////////////////////////////////////////////////////////////////////
// Radio Daughter board GPIO
wire [DB_GPIO_WIDTH-1:0] db_gpio_in[0:NUM_CHANNELS-1];
wire [DB_GPIO_WIDTH-1:0] db_gpio_out[0:NUM_CHANNELS-1];
wire [DB_GPIO_WIDTH-1:0] db_gpio_ddr[0:NUM_CHANNELS-1];
wire [DB_GPIO_WIDTH-1:0] db_gpio_fab[0:NUM_CHANNELS-1];
wire [31:0] radio_gpio_out[0:NUM_CHANNELS-1];
wire [31:0] radio_gpio_ddr[0:NUM_CHANNELS-1];
wire [31:0] radio_gpio_in[0:NUM_CHANNELS-1];
wire [31:0] leds[0:NUM_CHANNELS-1];
// Daughter board I/O
wire rx_running[0:NUM_CHANNELS-1], tx_running[0:NUM_CHANNELS-1];
wire [31:0] rx_int[0:NUM_CHANNELS-1], rx_data[0:NUM_CHANNELS-1], tx_int[0:NUM_CHANNELS-1], tx_data[0:NUM_CHANNELS-1];
//wire rx_stb[0:NUM_CHANNELS-1], tx_stb[0:NUM_CHANNELS-1];
wire db_fe_set_stb[0:NUM_CHANNELS-1];
wire [7:0] db_fe_set_addr[0:NUM_CHANNELS-1];
wire [31:0] db_fe_set_data[0:NUM_CHANNELS-1];
wire db_fe_rb_stb[0:NUM_CHANNELS-1];
wire [7:0] db_fe_rb_addr[0:NUM_CHANNELS-1];
wire [63:0] db_fe_rb_data[0:NUM_CHANNELS-1];
wire [NUM_RADIOS-1:0] sync_out;
genvar i;
generate
for (i = 0; i < NUM_CHANNELS; i = i + 1) begin
assign rx_atr[i] = rx_running[i];
assign tx_atr[i] = tx_running[i];
end
endgenerate
//------------------------------------
// Daughterboard Control
// -----------------------------------
localparam [7:0] SR_DB_BASE = 8'd160;
localparam [7:0] RB_DB_BASE = 8'd16;
generate
for (i = 0; i < NUM_CHANNELS; i = i + 1) begin: gen_db_control
db_control #(
.USE_SPI_CLK(0),
.SR_BASE(SR_DB_BASE),
.RB_BASE(RB_DB_BASE)
) db_control_i (
.clk(radio_clk), .reset(radio_rst),
.set_stb(db_fe_set_stb[i]), .set_addr(db_fe_set_addr[i]), .set_data(db_fe_set_data[i]),
.rb_stb(db_fe_rb_stb[i]), .rb_addr(db_fe_rb_addr[i]), .rb_data(db_fe_rb_data[i]),
.run_rx(rx_running[i]), .run_tx(tx_running[i]),
.misc_ins(32'h0), .misc_outs(),
.fp_gpio_in(radio_gpio_in[i]), .fp_gpio_out(radio_gpio_out[i]), .fp_gpio_ddr(radio_gpio_ddr[i]), .fp_gpio_fab(32'h0),
.db_gpio_in(db_gpio_in[i]), .db_gpio_out(db_gpio_out[i]), .db_gpio_ddr(db_gpio_ddr[i]), .db_gpio_fab(),
.leds(leds[i]),
.spi_clk(1'b0), .spi_rst(1'b0), .sen(), .sclk(), .mosi(), .miso(1'b0)
);
end
endgenerate
generate
for (i = 0; i < NUM_CHANNELS; i = i + 1) begin: gen_gpio_control
// Radio Data
assign rx_data[i] = rx[32*i+31:32*i];
assign tx[32*i+31:32*i] = tx_data[i];
// GPIO
assign db_gpio_out_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH] = db_gpio_out[i];
assign db_gpio_ddr_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH] = db_gpio_ddr[i];
assign db_gpio_in[i] = db_gpio_in_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH];
assign db_gpio_fab[i] = db_gpio_fab_flat[DB_GPIO_WIDTH*i +: DB_GPIO_WIDTH];
// LEDs
assign leds_flat[32*i+31:32*i] = leds[i];
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
//
// Front-panel GPIO
//
/////////////////////////////////////////////////////////////////////////////
wire [FP_GPIO_WIDTH-1:0] radio_gpio_in_sync;
wire [FP_GPIO_WIDTH-1:0] radio_gpio_src_out;
reg [FP_GPIO_WIDTH-1:0] radio_gpio_src_out_reg;
wire [FP_GPIO_WIDTH-1:0] radio_gpio_src_ddr;
reg [FP_GPIO_WIDTH-1:0] radio_gpio_src_ddr_reg = ~0;
// Double-synchronize the inputs to the PS
synchronizer #(
.INITIAL_VAL(1'b0), .WIDTH(FP_GPIO_WIDTH)
) ps_gpio_in_sync_i (
.clk(bus_clk), .rst(1'b0), .in(fp_gpio_in), .out(ps_gpio_in)
);
// Double-synchronize the inputs to the radio
synchronizer #(
.INITIAL_VAL(1'b0), .WIDTH(FP_GPIO_WIDTH)
) radio_gpio_in_sync_i (
.clk(radio_clk), .rst(1'b0), .in(fp_gpio_in), .out(radio_gpio_in_sync)
);
// Map the double-synchronized inputs to all radio channels
generate
for (i=0; i<NUM_CHANNELS; i=i+1) begin: gen_fp_gpio_in_sync
assign radio_gpio_in[i][FP_GPIO_WIDTH-1:0] = radio_gpio_in_sync;
end
endgenerate
// For each of the FP GPIO bits, implement four control muxes
generate
for (i=0; i<FP_GPIO_WIDTH; i=i+1) begin: gpio_muxing_gen
// 1) Select which radio drives the output
assign radio_gpio_src_out[i] = radio_gpio_out[fp_gpio_src_reg[2*i+1:2*i]][i];
always @ (posedge radio_clk) begin
if (radio_rst) begin
radio_gpio_src_out_reg <= 0;
end else begin
radio_gpio_src_out_reg <= radio_gpio_src_out;
end
end
// 2) Select which radio drives the direction
assign radio_gpio_src_ddr[i] = radio_gpio_ddr[fp_gpio_src_reg[2*i+1:2*i]][i];
always @ (posedge radio_clk) begin
if (radio_rst) begin
radio_gpio_src_ddr_reg <= ~0;
end else begin
radio_gpio_src_ddr_reg <= radio_gpio_src_ddr;
end
end
// 3) Select if the radio or the ps drives the output
//
// The following implements a 2:1 mux in a LUT explicitly to avoid
// glitches that can be introduced by unexpected Vivado synthesis.
//
(* dont_touch = "TRUE" *) LUT3 #(
.INIT(8'hCA) // Specify LUT Contents. O = ~I2&I0 | I2&I1
) mux_out_i (
.O(fp_gpio_out[i]), // LUT general output. Mux output
.I0(radio_gpio_src_out_reg[i]), // LUT input. Input 1
.I1(ps_gpio_out[i]), // LUT input. Input 2
.I2(fp_gpio_master_reg[i]) // LUT input. Select bit
);
// 4) Select if the radio or the PS drives the direction
//
(* dont_touch = "TRUE" *) LUT3 #(
.INIT(8'hC5) // Specify LUT Contents. O = ~I2&I0 | I2&~I1
) mux_ddr_i (
.O(fp_gpio_tri[i]), // LUT general output. Mux output
.I0(radio_gpio_src_ddr_reg[i]), // LUT input. Input 1
.I1(ps_gpio_tri[i]), // LUT input. Input 2
.I2(fp_gpio_master_reg[i]) // LUT input. Select bit
);
end
endgenerate
// Regport Mux for response
regport_resp_mux #(
.WIDTH (32),
.NUM_SLAVES (2)
) reg_resp_mux_i (
.clk(bus_clk), .reset(bus_rst),
.sla_rd_resp({reg_rd_resp_tk, reg_rd_resp_glob}),
.sla_rd_data({reg_rd_data_tk, reg_rd_data_glob}),
.mst_rd_resp(reg_rd_resp), .mst_rd_data(reg_rd_data)
);
// Timekeeper
wire [63:0] radio_time;
timekeeper #(
.BASE_ADDR (REG_BASE_TIMEKEEPER),
.TIME_INCREMENT (1'b1)
) timekeeper_i (
.tb_clk (radio_clk),
.tb_rst (radio_rst),
.s_ctrlport_clk (bus_clk),
.s_ctrlport_req_wr (reg_wr_req),
.s_ctrlport_req_rd (reg_rd_req),
.s_ctrlport_req_addr (reg_wr_req ? reg_wr_addr: reg_rd_addr),
.s_ctrlport_req_data (reg_wr_data),
.s_ctrlport_resp_ack (reg_rd_resp_tk),
.s_ctrlport_resp_data (reg_rd_data_tk),
.sample_rx_stb (rx_stb[0]),
.pps (pps_radioclk),
.tb_timestamp (radio_time),
.tb_timestamp_last_pps (),
.tb_period_ns_q32 ()
);
rfnoc_image_core #(
.PROTOVER(RFNOC_PROTOVER)
) rfnoc_image_core_i (
.chdr_aclk (bus_clk ),
.ctrl_aclk (bus_clk ), //TODO: X310 uses bus_clk_div2. we can also reduce it here.
.core_arst (bus_rst ),
.device_id (device_id ),
.radio_clk (radio_clk ),
.m_ctrlport_req_wr (m_ctrlport_req_wr ),
.m_ctrlport_req_rd (m_ctrlport_req_rd ),
.m_ctrlport_req_addr (m_ctrlport_req_addr ),
.m_ctrlport_req_data (m_ctrlport_req_data ),
.m_ctrlport_req_byte_en (),
.m_ctrlport_req_has_time (m_ctrlport_req_has_time),
.m_ctrlport_req_time (m_ctrlport_req_time ),
.m_ctrlport_resp_ack (m_ctrlport_resp_ack ),
.m_ctrlport_resp_status (2'b0),
.m_ctrlport_resp_data (m_ctrlport_resp_data ),
.radio_time (radio_time ),
.radio_rx_stb ({rx_stb[1], rx_stb[0] }),
.radio_rx_data ({rx_data[1], rx_data[0] }),
.radio_rx_running ({rx_running[1], rx_running[0]}),
.radio_tx_stb ({tx_stb[1], tx_stb[0] }),
.radio_tx_data ({tx_data[1], tx_data[0] }),
.radio_tx_running ({tx_running[1], tx_running[0]}),
.s_dma_tdata (dmai_tdata),
.s_dma_tlast (dmai_tlast),
.s_dma_tvalid (dmai_tvalid),
.s_dma_tready (dmai_tready),
.m_dma_tdata (dmao_tdata),
.m_dma_tlast (dmao_tlast),
.m_dma_tvalid (dmao_tvalid),
.m_dma_tready (dmao_tready)
);
//---------------------------------------------------------------------------
// Convert Control Port to Settings Bus
//---------------------------------------------------------------------------
ctrlport_to_settings_bus # (
.NUM_PORTS (2),
.USE_TIME (1)
) ctrlport_to_settings_bus_i (
.ctrlport_clk (radio_clk),
.ctrlport_rst (radio_rst),
.s_ctrlport_req_wr (m_ctrlport_req_wr),
.s_ctrlport_req_rd (m_ctrlport_req_rd),
.s_ctrlport_req_addr (m_ctrlport_req_addr),
.s_ctrlport_req_data (m_ctrlport_req_data),
.s_ctrlport_req_has_time (m_ctrlport_req_has_time),
.s_ctrlport_req_time (m_ctrlport_req_time),
.s_ctrlport_resp_ack (m_ctrlport_resp_ack),
.s_ctrlport_resp_data (m_ctrlport_resp_data),
.set_data ({db_fe_set_data[1], db_fe_set_data[0]}),
.set_addr ({db_fe_set_addr[1], db_fe_set_addr[0]}),
.set_stb ({db_fe_set_stb[1], db_fe_set_stb[0] }),
.set_time (),
.set_has_time (),
.rb_stb ({db_fe_rb_stb[1], db_fe_rb_stb[0] }),
.rb_addr ({db_fe_rb_addr[1], db_fe_rb_addr[0] }),
.rb_data ({db_fe_rb_data[1], db_fe_rb_data[0] }),
.timestamp (radio_time)
);
endmodule //e31x_core
`default_nettype wire
|