1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
//
// Copyright 2015 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
module b205_ref_pll(
input reset,
input clk, // 200 MHz sample clock
input refclk, // 40 MHz reference clock
input ref, // PPS or 10 MHz external reference
output reg locked,
// SPI lines to AD5662
output sclk,
output mosi,
output sync_n
);
// Base parameters
localparam SAMPLE_CLOCK_FREQ=200_000_000;
localparam REF_FREQ_PPS=1;
localparam REF_FREQ_10MHZ=10_000_000;
localparam REF_CLK_FREQ=40_000_000;
localparam PFD_FREQ_PPS=1;
localparam PFD_FREQ_10MHZ=10;
// Lock detection parameters
localparam LOCK_TOLERANCE_PPM=1;
localparam LOCK_MARGIN_PPS=(SAMPLE_CLOCK_FREQ/PFD_FREQ_PPS)*LOCK_TOLERANCE_PPM/1_000_000;
localparam LOCK_MARGIN_10MHZ=(SAMPLE_CLOCK_FREQ/PFD_FREQ_10MHZ)*LOCK_TOLERANCE_PPM/1_000_000;
// Reference frequency detection parameters
// References are only valid if they are +/-5ppm because that is the range of the VCTXCO
localparam REF_PERIOD_PPS=SAMPLE_CLOCK_FREQ/REF_FREQ_PPS;
localparam REF_PERIOD_10MHZ=SAMPLE_CLOCK_FREQ/REF_FREQ_10MHZ;
localparam REF_PERIOD_PPS_MIN=REF_PERIOD_PPS-(REF_PERIOD_PPS*5/1_000_000)-1;
localparam REF_PERIOD_PPS_MAX=REF_PERIOD_PPS+(REF_PERIOD_PPS*5/1_000_000)+1;
localparam REF_PERIOD_10MHZ_MIN=REF_PERIOD_10MHZ-(REF_PERIOD_10MHZ*5/1_000_000)-1;
localparam REF_PERIOD_10MHZ_MAX=REF_PERIOD_10MHZ+(REF_PERIOD_10MHZ*5/1_000_000)+1;
// R divider parameters
localparam RDIV_PPS=REF_FREQ_PPS/PFD_FREQ_PPS;
localparam RDIV_10MHZ=REF_FREQ_10MHZ/PFD_FREQ_10MHZ;
// N divider parameters (refclk is divided by 2)
localparam NDIV_PPS=REF_CLK_FREQ/2/PFD_FREQ_PPS;
localparam NDIV_10MHZ=REF_CLK_FREQ/2/PFD_FREQ_10MHZ;
// PFD parameters
localparam PFD_PERIOD_PPS=SAMPLE_CLOCK_FREQ/PFD_FREQ_PPS;
localparam PFD_PERIOD_10MHZ=SAMPLE_CLOCK_FREQ/PFD_FREQ_10MHZ;
// Initial divide by 2 for 40 MHz clock
// (since refclk cannot be sampled directly)
reg refclk_div;
always @(posedge refclk) begin
refclk_div <= ~refclk_div;
end
// flop signals into sample clock domain together
reg [3:0] refsmp;
reg [3:0] refclksmp;
always @(posedge clk) begin
refsmp <= {refsmp[2:0],ref};
refclksmp <= {refclksmp[2:0],refclk_div};
end
// rising edge detection
wire ref_rising = (refsmp[3:2] == 2'b01);
wire refclk_rising = (refclksmp[3:2] == 2'b01);
// reference frequency detection
reg [27:0] refcnt;
reg ref_detected;
reg ref_is_10M;
reg ref_is_pps;
wire valid_ref = ref_is_10M | ref_is_pps;
always @(posedge clk) begin
if (reset) begin
refcnt <= 28'd0;
ref_detected <= 1'b0;
ref_is_10M <= 1'b0;
ref_is_pps <= 1'b0;
end
else if (ref_rising) begin
refcnt <= 28'd1;
ref_detected <= 1'b1;
ref_is_10M <= ((refcnt >= REF_PERIOD_10MHZ_MIN) && (refcnt <= REF_PERIOD_10MHZ_MAX));
ref_is_pps <= ((refcnt >= REF_PERIOD_PPS_MIN) && (refcnt <= REF_PERIOD_PPS_MAX));
end
else if ((ref_is_10M && (refcnt > REF_PERIOD_10MHZ_MAX)) || (refcnt > REF_PERIOD_PPS_MAX)) begin
// consider the reference lost
refcnt <= 28'd0;
ref_detected <= 1'b0;
ref_is_10M <= 1'b0;
ref_is_pps <= 1'b0;
end
else if (ref_detected)
refcnt <= refcnt + 28'd1;
end
// R divider
wire [23:0] rdiv = ref_is_10M ? RDIV_10MHZ : RDIV_PPS;
reg [23:0] rcnt;
wire [23:0] next_rcnt = ~valid_ref ? 24'd0 : (rcnt == rdiv) ? 24'd1 : rcnt + 1'b1;
reg r_rising;
always @(posedge clk) begin
if (ref_rising)
rcnt <= next_rcnt;
r_rising <= (ref_rising && ((ref_is_10M && (rcnt == rdiv)) || ref_is_pps));
end
// N divider
// Enable on rising edge of R after valid_ref
// is asserted so R and N signals start aligned.
// Disable if reference lost.
wire [25:0] ndiv = ref_is_10M ? NDIV_10MHZ : NDIV_PPS;
reg [25:0] ncnt;
wire [25:0] next_ncnt = ~valid_ref ? 26'd0 : ncnt == ndiv ? 26'd1 : ncnt + 1'b1;
reg n_rising;
always @(posedge clk) begin
if (refclk_rising)
ncnt <= next_ncnt;
n_rising <= (refclk_rising && (ncnt == ndiv));
end
// Frequency Counter
wire signed [28:0] period = ref_is_10M ? PFD_PERIOD_10MHZ : PFD_PERIOD_PPS;
reg signed [28:0] r_period_cnt;
reg signed [28:0] freq_err;
always @(posedge clk) begin
if (reset | ~valid_ref) begin
r_period_cnt <= 28'd0;
freq_err <= 29'sd0;
end
else if (r_rising) begin
r_period_cnt <= 28'd1;
freq_err <= period - r_period_cnt;
end
else
r_period_cnt <= r_period_cnt + 28'd1;
end
// Phase Counter
reg signed [28:0] lead_cnt;
reg lead_cnt_ena;
reg signed [28:0] lead;
always @(posedge clk) begin
// Count how much N leads R
// The count is negative because it measures
// how much the VCTCXO must be slowed down.
if (~valid_ref | n_rising) begin
lead_cnt <= 29'sd0;
lead_cnt_ena <= 1'b1;
if (r_rising)
lead <= 29'sd0;
end
else if (r_rising) begin
if (lead_cnt_ena)
lead <= lead_cnt - 29'sd1;
else begin
// R rising with no preceding N rising.
// N has changed from leading to lagging R,
// but we don't yet know by how much so
// assume 1.
lead <= 29'sd1;
end
lead_cnt_ena <= 1'b0;
end
else if (lead_cnt_ena)
lead_cnt <= lead_cnt - 29'sd1;
end
// PFD State Machine
localparam MEASURE=4'd0;
localparam CAPTURE=4'd1;
localparam CAPTURE_LAG=4'd2;
localparam CAPTURE_LEAD=4'd3;
localparam CALCULATE_ERROR=4'd4;
localparam CALCULATE_10M_GAIN=4'd5;
localparam CALCULATE_ADJUSTMENT=4'd6;
localparam CALCULATE_OUTPUT_VALUE=4'd7;
localparam APPLY_OUTPUT_VALUE=4'd8;
reg [3:0] state;
reg [15:0] daco = 16'd32767;
wire signed [28:0] lock_margin = ref_is_10M ? LOCK_MARGIN_10MHZ : LOCK_MARGIN_PPS;
wire signed [28:0] lag = lead + period;
reg signed [28:0] phase_err;
reg signed [28:0] err;
reg signed [28:0] shift;
reg signed [28:0] adj;
wire signed [28:0] dacv = {13'd0, daco};
reg signed [28:0] sum;
reg [2:0] ld;
always @(posedge clk) begin
if (reset || ~valid_ref) begin
state <= MEASURE;
daco <= 16'd32767;
err <= 29'sd0;
shift <= 29'sd0;
adj <= 29'sd0;
ld <= 3'd0;
end
else begin
case(state)
MEASURE: begin
if (r_rising)
state <= CAPTURE;
end
CAPTURE: begin
if (lag < -lead)
state <= CAPTURE_LAG;
else
state <= CAPTURE_LEAD;
end
CAPTURE_LAG: begin
phase_err <= lag;
ld <= {ld[1:0], (lag <= lock_margin)};
state <= CALCULATE_ERROR;
end
CAPTURE_LEAD: begin
phase_err <= lead;
ld <= {ld[1:0], (-lead <= lock_margin)};
state <= CALCULATE_ERROR;
end
CALCULATE_ERROR: begin
err <= phase_err + freq_err;
state <= ref_is_10M ? CALCULATE_10M_GAIN : CALCULATE_ADJUSTMENT;
end
CALCULATE_10M_GAIN: begin
shift <= (err < -7 || err > 7) ? 7 : (err < 0 ? -err : err);
state <= CALCULATE_ADJUSTMENT;
end
CALCULATE_ADJUSTMENT: begin
// The VCTCXO is +/-5 ppm from 0.3V to 1.5V and the DAC is 16 bits,
// which works out to 0.000228885 ppm per DAC unit.
// The 200 MHz sampling clock means each unit of error is 0.005 ppm,
// which works out to 21.845 DAC units to correct each unit of error.
// Theory is nice, but the proportional and integral gains used here
// were determined through manual tuning.
if (ref_is_10M)
adj <= (err <<< shift);
else
adj <= (err <<< 4) - err;
state <= CALCULATE_OUTPUT_VALUE;
end
CALCULATE_OUTPUT_VALUE: begin
sum <= dacv + adj;
state <= APPLY_OUTPUT_VALUE;
end
APPLY_OUTPUT_VALUE: begin
// Clip and apply
if (sum < 29'sd0)
daco <= 16'd0;
else if (sum > 29'sd65535)
daco <= 16'd65535;
else
daco <= sum[15:0];
state <= MEASURE;
end
endcase
end
end
always @(posedge clk)
locked <= (ld == 3'b111);
ad5662_auto_spi dac
(
.clk(clk),
.dat(daco),
.sclk(sclk),
.mosi(mosi),
.sync_n(sync_n)
);
endmodule
|