1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
|
//
// Copyright 2013 Ettus Research LLC
// Copyright 2017 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//
//------------------------------------------------------------------
//
// In SISO mode, we output a clock thats 1x the frequency of the Catalina
// source-synchronous bus clock to be used as the radio_clk.
// In MIMO mode, we output a clock thats 1/2 the frequency of the Catalina
// source-synchronous bus clock to be used as the radio_clk.
//
//------------------------------------------------------------------
module b200_io
(
input reset,
input mimo,
// Baseband sample interface
output radio_clk,
output [11:0] rx_i0,
output [11:0] rx_q0,
output [11:0] rx_i1,
output [11:0] rx_q1,
input [11:0] tx_i0,
input [11:0] tx_q0,
input [11:0] tx_i1,
input [11:0] tx_q1,
// Catalina interface
input rx_clk,
input rx_frame,
input [11:0] rx_data,
output tx_clk,
output tx_frame,
output [11:0] tx_data
);
genvar z;
//------------------------------------------------------------------
//
// Synchronize MIMO signal from bus_clk to siso_clk.
//
//------------------------------------------------------------------
reg mimo_sync, mimo_sync2;
always @(posedge siso_clk) begin
mimo_sync <= mimo_sync2;
mimo_sync2 <= mimo;
end
//------------------------------------------------------------------
// Clock Buffering.
// BUFIO2 drives all IDDR2 and ODDR2 cells directly in bank3.
// Need two pairs of BUFIO2 one pair each for Top Left and Bottom Left half banks.
//------------------------------------------------------------------
wire rx_clk_buf;
wire mimo_clk_unbuf;
wire siso_clk_unbuf;
wire siso2_clk_unbuf;
IBUFG clk_ibufg (.O(rx_clk_buf), .I(rx_clk));
//------------------------------------------------------------------
//
// Buffers for LEFT TOP half bank pins
// BUFIO2_X0Y22
//
//------------------------------------------------------------------
BUFIO2 #(
.DIVIDE(4),
.DIVIDE_BYPASS("FALSE"),
.I_INVERT("FALSE"),
.USE_DOUBLER("TRUE"))
clk_bufio_lt
(
.IOCLK(io_clk_lt),
.DIVCLK(mimo_clk_unbuf), // Non-inverted source of 1/2x interface clock for radio_clk
.SERDESSTROBE(),
.I(rx_clk_buf)
);
// BUFIO2_X0Y23
BUFIO2 #(
.DIVIDE(1),
.DIVIDE_BYPASS("FALSE"),
.I_INVERT("TRUE"),
.USE_DOUBLER("FALSE"))
clk_bufio_lt_b
(
.IOCLK(io_clk_lt_b),
.DIVCLK(siso_clk2_unbuf), // Inverted source of 1x interface clock for radio_clk
.SERDESSTROBE(),
.I(rx_clk_buf)
);
//------------------------------------------------------------------
//
// Buffers for LEFT BOTTOM half bank pins
// BUFIO2_X1Y14
//
//------------------------------------------------------------------
BUFIO2 #(
.DIVIDE(1),
.DIVIDE_BYPASS("FALSE"),
.I_INVERT("FALSE"),
.USE_DOUBLER("FALSE"))
clk_bufio_lb
(
.IOCLK(io_clk_lb),
.DIVCLK(siso_clk_unbuf), // Non-inverted source of 1x interface clock for local IO use
.SERDESSTROBE(),
.I(rx_clk_buf)
);
// BUFIO2_X1Y15
BUFIO2 #(
.DIVIDE(1),
.DIVIDE_BYPASS("FALSE"),
.I_INVERT("TRUE"),
.USE_DOUBLER("FALSE"))
clk_bufio_lb_b
(
.IOCLK(io_clk_lb_b),
.DIVCLK(),
.SERDESSTROBE(),
.I(rx_clk_buf)
);
//------------------------------------------------------------------
// Always-on SISO clk needed to load/unload DDR2 I/O Regs
//------------------------------------------------------------------
BUFG siso_clk_bufg (
.I(siso_clk_unbuf),
.O(siso_clk)
);
//------------------------------------------------------------------
// 2-1 mux combined with BUFG to drive global radio_clk.
// Note: Not addressed setup/hold constraints of S input ...unsure if anything "bad" can happen here.
//------------------------------------------------------------------
BUFGMUX #(
.CLK_SEL_TYPE("SYNC"))
radio_clk_bufg (
.I0(siso_clk2_unbuf),
.I1(mimo_clk_unbuf),
.S(mimo_sync),
.O(radio_clk)
);
//------------------------------------------------------------------
// RX Frame Signal - In bank 3 LB
//------------------------------------------------------------------
wire rx_frame_0, rx_frame_1;
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_frame (
.Q0(rx_frame_1),
.Q1(rx_frame_0),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_frame),
.R(1'b0),
.S(1'b0));
reg rx_frame_d1, rx_frame_d2;
always @(posedge siso_clk)
if(~mimo_sync)
{ rx_frame_d2, rx_frame_d1 } <= { rx_frame_1, 1'b0 };
else
{ rx_frame_d2, rx_frame_d1 } <= { rx_frame_d1, rx_frame_1 };
//------------------------------------------------------------------
// RX Data Bus - In bank3 both LT and LB
//------------------------------------------------------------------
wire [11:0] rx_i,rx_q;
// Bit0 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i0 (
.Q0(rx_q[0]),
.Q1(rx_i[0]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[0]),
.R(1'b0),
.S(1'b0));
// Bit1 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i1 (
.Q0(rx_q[1]),
.Q1(rx_i[1]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[1]),
.R(1'b0),
.S(1'b0));
// Bit2 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i2 (
.Q0(rx_q[2]),
.Q1(rx_i[2]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[2]),
.R(1'b0),
.S(1'b0));
// Bit3 LT
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i3 (
.Q0(rx_q[3]),
.Q1(rx_i[3]),
.C0(io_clk_lt),
.C1(io_clk_lt_b),
.CE(1'b1),
.D(rx_data[3]),
.R(1'b0),
.S(1'b0));
// Bit4 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i4 (
.Q0(rx_q[4]),
.Q1(rx_i[4]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[4]),
.R(1'b0),
.S(1'b0));
// Bit5 LT
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i5 (
.Q0(rx_q[5]),
.Q1(rx_i[5]),
.C0(io_clk_lt),
.C1(io_clk_lt_b),
.CE(1'b1),
.D(rx_data[5]),
.R(1'b0),
.S(1'b0));
// Bit6 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i6 (
.Q0(rx_q[6]),
.Q1(rx_i[6]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[6]),
.R(1'b0),
.S(1'b0));
// Bit7 LT
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i7 (
.Q0(rx_q[7]),
.Q1(rx_i[7]),
.C0(io_clk_lt),
.C1(io_clk_lt_b),
.CE(1'b1),
.D(rx_data[7]),
.R(1'b0),
.S(1'b0));
// Bit8 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i8 (
.Q0(rx_q[8]),
.Q1(rx_i[8]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[8]),
.R(1'b0),
.S(1'b0));
// Bit9 LT
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i9 (
.Q0(rx_q[9]),
.Q1(rx_i[9]),
.C0(io_clk_lt),
.C1(io_clk_lt_b),
.CE(1'b1),
.D(rx_data[9]),
.R(1'b0),
.S(1'b0));
// Bit10 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i10 (
.Q0(rx_q[10]),
.Q1(rx_i[10]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[10]),
.R(1'b0),
.S(1'b0));
// Bit11 LB
IDDR2 #(
.DDR_ALIGNMENT("C0"))
iddr2_i11 (
.Q0(rx_q[11]),
.Q1(rx_i[11]),
.C0(io_clk_lb),
.C1(io_clk_lb_b),
.CE(1'b1),
.D(rx_data[11]),
.R(1'b0),
.S(1'b0));
//------------------------------------------------------------------
//
// De-mux I & Q, Ch A & B onto fullrate clock.
//
// In all modes we grab data from the IDDR2 using negedge of siso_clk.
// IDDR2 updates all Q pins on posedge of io_clk. siso_clk does not have aligned phase
// with siso_clk...siso_clk is always a little more delayed than io_clk.
// This small delay is always much smaller than half a clk cycle. Thus by sampling the Q outputs
// with negedge siso_clk we avoid any risk of a race condition (hold violation on receiveing register).
//
// In SISO mode data is replicated onto both CH0 and CH1 for max flexibility in using the DDC's.
//
//------------------------------------------------------------------
reg [11:0] rx_i_del, rx_q_del;
reg [11:0] rx_i0_siso_pos;
reg [11:0] rx_q0_siso_pos;
reg [11:0] rx_i1_siso_pos;
reg [11:0] rx_q1_siso_pos;
reg [11:0] rx_i0_siso_neg;
reg [11:0] rx_q0_siso_neg;
reg [11:0] rx_i1_siso_neg;
reg [11:0] rx_q1_siso_neg;
reg [11:0] rx_i0_siso;
reg [11:0] rx_q0_siso;
reg [11:0] rx_i1_siso;
reg [11:0] rx_q1_siso;
always @(negedge siso_clk)
if(mimo_sync)
// rx_frame_0 was sampled by same falling io_clk edge as rx_i[x]
// rx_frame_0 == 0 causes I & Q to be allocated to CH0
if(rx_frame_0) begin
rx_i_del[11:0] <= rx_i[11:0];
rx_q_del[11:0] <= rx_q[11:0];
end
else begin
// Deal with the fact that Ch A and Ch B are labelled in silkscreen opposite to their documentation in AD9361.
rx_i0_siso[11:0] <= rx_i[11:0];
rx_q0_siso[11:0] <= rx_q[11:0];
rx_i1_siso[11:0] <= rx_i_del[11:0];
rx_q1_siso[11:0] <= rx_q_del[11:0];
end
else begin
rx_i0_siso[11:0] <= rx_i[11:0];
rx_q0_siso[11:0] <= rx_q[11:0];
rx_i1_siso[11:0] <= rx_i[11:0];
rx_q1_siso[11:0] <= rx_q[11:0];
end // else: !if(rx_frame_0)
//------------------------------------------------------------------
//
// Now prepare data for crossing into radio_clk domain which can be for SISO mode (inverted) siso_clk or for MIMO mode siso_clk/2.
// In MIMO mode tx_strobe is used to maintain a known phase relationship betwwen siso_clk and radio_clk.
// (Note: Negedge or posedge is used conditionally so that we have massive margin against a fast-path race condition
// betwwen siso_clk and radio_clk). This kind of arrangement could still lead to confusion in timing analysis
// even if it works in the real world depending on how well the STA tool can do automatic case analysis.
//
//------------------------------------------------------------------
// This code lock only relevent in MIMO mode.
always @(negedge siso_clk)
if (tx_strobe)
begin
rx_i0_siso_neg[11:0] <= rx_i0_siso[11:0];
rx_q0_siso_neg[11:0] <= rx_q0_siso[11:0];
rx_i1_siso_neg[11:0] <= rx_i1_siso[11:0];
rx_q1_siso_neg[11:0] <= rx_q1_siso[11:0];
end
// This code block only relevent in SISO mode.
always @(posedge siso_clk)
begin
rx_i0_siso_pos[11:0] <= rx_i0_siso[11:0];
rx_q0_siso_pos[11:0] <= rx_q0_siso[11:0];
rx_i1_siso_pos[11:0] <= rx_i1_siso[11:0];
rx_q1_siso_pos[11:0] <= rx_q1_siso[11:0];
end
assign rx_i0 = (mimo_sync) ? rx_i0_siso_neg : rx_i0_siso_pos;
assign rx_q0 = (mimo_sync) ? rx_q0_siso_neg : rx_q0_siso_pos;
assign rx_i1 = (mimo_sync) ? rx_i1_siso_neg : rx_i1_siso_pos;
assign rx_q1 = (mimo_sync) ? rx_q1_siso_neg : rx_q1_siso_pos;
//------------------------------------------------------------------
// TX Data Bus - In bank3 LB
//------------------------------------------------------------------
reg [11:0] tx_i,tx_q;
reg tx_strobe_del;
generate
for(z = 0; z < 12; z = z + 1)
begin : gen_pins
ODDR2 #(
.DDR_ALIGNMENT("C0"), .SRTYPE("ASYNC"))
oddr2 (
.Q(tx_data[z]), .C0(io_clk_lb), .C1(io_clk_lb_b),
.CE(1'b1), .D0(tx_i[z]), .D1(tx_q[z]), .R(1'b0), .S(1'b0));
end
endgenerate
//------------------------------------------------------------------
// TX Frame Signal - In bank 3 LB
//------------------------------------------------------------------
ODDR2 #(
.DDR_ALIGNMENT("C0"), .SRTYPE("ASYNC"))
oddr2_frame (
.Q(tx_frame), .C0(io_clk_lb), .C1(io_clk_lb_b),
.CE(1'b1), .D0(tx_strobe_del), .D1(mimo_sync & tx_strobe_del), .R(1'b0), .S(1'b0));
//------------------------------------------------------------------
// TX Clock Signal - In bank 3 LB
//------------------------------------------------------------------
ODDR2 #(
.DDR_ALIGNMENT("C0"), .SRTYPE("ASYNC"))
oddr2_clk (
.Q(tx_clk), .C0(io_clk_lb), .C1(io_clk_lb_b),
.CE(1'b1), .D0(1'b1), .D1(1'b0), .R(1'b0), .S(1'b0));
//------------------------------------------------------------------
//
// Mux I & Q, Ch A & B onto fullrate clockTX bus to AD9361
//
//------------------------------------------------------------------
wire tx_strobe;
reg [11:0] tx_i_del, tx_q_del;
reg find_radio_clk_phase = 1'b0;
reg find_radio_clk_phase_del;
always @(posedge radio_clk)
find_radio_clk_phase <= ~find_radio_clk_phase;
always @(negedge radio_clk)
find_radio_clk_phase_del <= find_radio_clk_phase;
assign tx_strobe = mimo_sync ? (find_radio_clk_phase_del ^ find_radio_clk_phase) : 1'b1;
always @(posedge siso_clk)
tx_strobe_del <= tx_strobe;
// This strange piece of logic allows either USRP DUC to drive the AD9361 in SISO mode.
// This is principly used in the CODEC loopback test.
wire [11:0] tx_im = (mimo_sync || tx_i0 != 12'h0) ? tx_i0 : tx_i1;
wire [11:0] tx_qm = (mimo_sync || tx_q0 != 12'h0) ? tx_q0 : tx_q1;
// Deal with the fact that Ch A and Ch B are labelled in silkscreen opposite to their documentation in AD9361.
// (Except on B200 based on AD9364 where only the true Ch A is stuffed)
always @(posedge siso_clk)
if(tx_strobe)
begin
{tx_i,tx_q} <= mimo_sync ? {tx_i1,tx_q1} : {tx_im,tx_qm};
{tx_i_del,tx_q_del} <= {tx_i0,tx_q0};
end
else
{tx_i,tx_q} <= {tx_i_del,tx_q_del};
//
// Debug
//
/* -----\/----- EXCLUDED -----\/-----
wire [35:0] CONTROL0;
reg [11:0] tx_i_del_debug, tx_q_del_debug;
reg [11:0] tx_i_debug,tx_q_debug;
reg [11:0] tx_i0_debug,tx_q0_debug;
reg find_radio_clk_phase_debug;
reg find_radio_clk_phase_del_debug;
reg tx_strobe_debug;
reg tx_strobe_del_debug;
always @(posedge siso_clk) begin
tx_i_del_debug <= tx_i_del;
tx_q_del_debug <= tx_q_del;
tx_i_debug <= tx_i;
tx_q_debug <= tx_q;
tx_i0_debug <=tx_i0;
tx_q0_debug <= tx_q0;
find_radio_clk_phase_debug <= find_radio_clk_phase;
find_radio_clk_phase_del_debug <= find_radio_clk_phase_del;
tx_strobe_debug <= tx_strobe;
tx_strobe_del_debug <= tx_strobe_del;
end
chipscope_icon chipscope_icon_i0
(
.CONTROL0(CONTROL0) // INOUT BUS [35:0]
);
chipscope_ila_128 chipscope_ila_i0
(
.CONTROL(CONTROL0), // INOUT BUS [35:0]
.CLK(siso_clk), // IN
.TRIG0(
{
tx_i_del_debug[11:0],
tx_q_del_debug[11:0],
tx_i_debug[11:0],
tx_q_debug[11:0],
tx_i0_debug[11:0],
tx_q0_debug[11:0],
find_radio_clk_phase_debug,
find_radio_clk_phase_del_debug,
tx_strobe_debug,
tx_strobe_del_debug
}
)
);
-----/\----- EXCLUDED -----/\----- */
endmodule
|