aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/sim/general/sim_math.vh
blob: a088707407fc02a0bb5c44b1a1d2f520d90de046 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
// All code take from the HDLCon paper:
// "Verilog Transcendental Functions for Numerical Testbenches"
//
// Authored by:
// Mark G. Arnold marnold@co.umist.ac.uk,
// Colin Walter c.walter@co.umist.ac.uk
// Freddy Engineer freddy.engineer@xilinx.com
//



// The sine function is approximated with a polynomial which works
// for -π/2 < x < π/2. (This polynomial, by itself, was used as a
// Verilog example in [2]; unfortunately there was a typo with the
// coefficients. The correct coefficients together with an error
// analysis are given in [3].)   For arguments outside of -π/2 < x < π/2,
// the identities sin(x) = -sin(-x) and sin(x) = -sin(x-π) allow the
// argument to be shifted to be within this range.  The latter identity
// can be applied repeatedly.  Doing so could cause inaccuracies for
// very large arguments, but in practice the errors are acceptable
// if the Verilog simulator uses double-precision floating point.

function real sin;
  input x;
  real x;
  real x1,y,y2,y3,y5,y7,sum,sign;
  begin
    sign = 1.0;
    x1 = x;
    if (x1<0)
      begin
        x1 = -x1;
        sign = -1.0;
      end
    while (x1 > 3.14159265/2.0)
      begin
        x1 = x1 - 3.14159265;
        sign = -1.0*sign;
      end
    y = x1*2/3.14159265;
    y2 = y*y;
    y3 = y*y2;
    y5 = y3*y2;
    y7 = y5*y2;
    sum = 1.570794*y - 0.645962*y3 +
           0.079692*y5 - 0.004681712*y7;
    sin = sign*sum;
  end
endfunction

// The cosine and tangent are computed from the sine:
function real cos;
  input x;
  real x;
  begin
    cos = sin(x + 3.14159265/2.0);
  end
endfunction


function real tan;
  input x;
  real x;
  begin
    tan = sin(x)/cos(x);
  end
endfunction

// The base-two exponential (antilogarithm) function, 2x, is computed by
// examining the bits of the argument, and for those bits of the argument
// that are 1, multiplying the result by the corresponding power of a base
//  very close to one.  For example,  if there were only two bits after
// the radix point, the base would be the fourth root of two, 1.1892.
// This number is squared on each iteration:  1.4142,  2.0,  4.0,  16.0.
// So, if x is 101.112, the function computes 25.75 as 1.1892*1.4142*2.0*16.0 = 53.81.
// In general, for k bits of precision, the base would be the 2k root of two.
// Since we need about 23 bits of accuracy for our function, the base we use
// is the 223 root of two, 1.000000082629586.  This constant poses a problem
// to some Verilog parsers, so we construct it in two parts.  The following
// function computes the appropriate root of two by repeatedly squaring this constant:

function real rootof2;
  input n;
  integer n;
  real power;
  integer i;

  begin
    power = 0.82629586;
    power = power / 10000000.0;
    power = power + 1.0;
    i = -23;

    if (n >= 1)
      begin
        power = 2.0;
        i = 0;
      end

    for (i=i; i< n; i=i+1)
      begin
        power = power * power;
      end
    rootof2 = power;
  end
endfunction // if

// This function is used for computing both antilogarithms and logarithms.
// This routine is never called with n less than -23, thus no validity check
// need be performed. When n>0, the exponentiation begins with 2.0 in order to
// improve accuracy.
// For computing the antilogarithm, we make use of the identity ex = 2x/ln(2),
// and then proceed as in the example above.  The constant 1/ln(2) = 1.44269504.
// Here is the natural exponential function:

function real exp;
  input x;
  real x;
  real x1,power,prod;
  integer i;
  begin
    x1 = fabs(x)*1.44269504;
    if (x1 > 255.0)
      begin
        exp = 0.0;
        if (x>0.0)
          begin
            $display("exp illegal argument:",x);
            $stop;
          end
      end
    else
      begin
        prod = 1.0;
        power = 128.0;
        for (i=7; i>=-23; i=i-1)
          begin
            if (x1 > power)
              begin
                prod = prod * rootof2(i);
                x1 = x1 - power;
              end
            power = power / 2.0;
          end
        if (x < 0)
          exp = 1.0/prod;
        else
          exp = prod;
      end
  end
endfunction // fabs

// The function prints an error message if the argument is too large
// (greater than about 180).  All error messages in this package are
// followed by $stop  to allow the designer to use the debugging
// features of Verilog to determine the cause of the error, and
// possibly to resume the simulation.  An argument of less than
// about –180 simply returns zero with no error.  The main loop
// assumes a positive argument.  A negative argument is computed as 1/e-x.
// The logarithm function prints an error message for arguments less
// than or equal to zero because the real-valued logarithm is not
// defined for such arguments.  The loop here requires an argument
// greater than or equal to one.  For arguments between zero and one,
// this code uses the identity ln(1/x) = -ln(x).

function real log;
  input x;
  real x;
  real re,log2;
  integer i;
  begin
    if (x <= 0.0)
      begin
        $display("log illegal argument:",x);
        $stop;
        log = 0;
      end
    else
      begin
        if (x<1.0)
          re = 1.0/x;
        else
          re = x;
        log2 = 0.0;
        for (i=7; i>=-23; i=i-1)
          begin
            if (re > rootof2(i))
              begin
                re = re/rootof2(i);
                log2 = 2.0*log2 + 1.0;
              end
            else
              log2 = log2*2;
          end
        if (x < 1.0)
          log = -log2/12102203.16;
        else
          log = log2/12102203.16;
      end
    end
endfunction

// The code only divides re by rootof2(i) when the re is larger
// (so that the quotient will be greater than 1.0). Each time
// such a division occurs, a bit that is 1 is recorded in the
// whole number result (multiply by 2 and add 1).  Otherwise,
// a zero is recorded (multiply by 2).  At the end of the loop,
// log2 will contain 223 log2|x|.  We divide by 223 and use the
// identity ln(x) = log2(x)/log2(e).  The constant 12102203.16 is 223  log2(e).
// The log(x) and exp(x)functions are used to implement the pow(x,y) and sqrt(x) functions:

function real pow;
  input x,y;
  real x,y;
  begin
    if (x<0.0)
      begin
        $display("pow illegal argument:",x);
        $stop;
      end
    pow = exp(y*log(x));
  end
endfunction

function real sqrt;
  input x;
  real x;
  begin
    if (x<0.0)
      begin
        $display("sqrt illegal argument:",x);
        $stop;
      end
    sqrt = exp(0.5*log(x));
  end
endfunction

// The arctangent [3,7] is computed as a continued fraction,
// using the identities tan-1(x) = -tan-1(-x) and tan-1(x) = π/2 - tan-1(1/x)
// to reduce the range to 0 < x < 1:

function real atan;
  input x;
  real x;
  real x1,x2,sign,bias;
  real d3,s3;
  begin
    sign = 1.0;
    bias = 0.0;
    x1 = x;
    if (x1 < 0.0)
      begin
        x1 = -x1;
        sign = -1.0;
      end
    if (x1 > 1.0)
      begin
        x1 = 1.0/x1;
        bias = sign*3.14159265/2.0;
        sign = -1.0*sign;
      end
    x2 = x1*x1;
    d3 = x2 + 1.44863154;
    d3 = 0.26476862 / d3;
    s3 = x2 + 3.3163354;
    d3 = s3 - d3;
    d3 = 7.10676 / d3;
    s3 = 6.762139 + x2;
    d3 = s3 - d3;
    d3 = 3.7092563 / d3;
    d3 = d3 + 0.17465544;
    atan = sign*x1*d3+bias;
  end
endfunction

// The other functions (asin(x) and acos(x)) are computed from the arctangent.