1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
//
// Copyright 2013 Ettus Research LLC
//
// Adds 6 bytes at the beginning of every packet
// This gives us good32/64bit alignment of IP/UDP headers.
//
// The 6 bytes added include an octet passed as a parameter allowing a label to
// be added as metatdata in the header padding. This is typically the ingress
// port to be tagged in the packet as metadata.
//
// bit[65] EOF
// bit[64] SOF
// bit[68:66] occ
//
// This design will break if downstream can not be guarenteed to be ready to accept data.
// XGE MAC expects to be able to stream whole packet with no handshaking.
// We force downstream packet gate to discard packet by signalling error with tlast and
// resynchronizing with upstream.
//
module xge64_to_axi64
#(parameter LABEL=0)
(
input clk,
input reset,
input clear,
input [63:0] datain,
input [2:0] occ,
input sof,
input eof,
input err,
input valid,
output reg [63:0] axis_tdata,
output reg [3:0] axis_tuser,
output reg axis_tlast,
output reg axis_tvalid, // Signal data avilable to downstream
input axis_tready
);
localparam EMPTY = 0;
localparam IN_USE = 1;
localparam FLUSHING3 = 2;
localparam FLUSHING4 = 3;
localparam FLUSHING5 = 4;
localparam FLUSHING6 = 5;
localparam FLUSHING7 = 6;
localparam FLUSHING8 = 7;
localparam ERROR1 = 8;
localparam EOF1 = 3'b001;
localparam EOF2 = 3'b010;
localparam EOF3 = 3'b011;
localparam EOF4 = 3'b100;
localparam EOF5 = 3'b101;
localparam EOF6 = 3'b110;
localparam EOF7 = 3'b111;
localparam EOF8 = 3'b000;
reg [3:0] state;
reg err_reg;
reg [47:0] holding_reg;
always @(posedge clk)
if(reset | clear) begin
state <= EMPTY;
axis_tdata <= 0;
holding_reg <= 0;
axis_tvalid <= 0;
end else begin
// Defaults
axis_tvalid <= 0;
axis_tuser <= 0;
axis_tlast <= 0;
err_reg <= 0;
case(state)
EMPTY: begin
if (valid & axis_tready & sof) begin
// Start of packet should always be received in this state.
// It should NEVER be possible to get a packet from the MAC with EOF also set in
// the first 64 bits so not designed for.
// Add pad. Store last 6 octets into holding, change state to show data in holding.
state <= IN_USE;
axis_tvalid <= 1;
end
else if (valid & ~axis_tready)
// Assert on this condition, add H/W to deal with overflow later.
$display("ERROR: xge64_to_axi64, valid & ~axis_tready");
holding_reg <= datain[47:0];
axis_tdata[63:56] <= LABEL; // Tag packet with label
axis_tdata[55:16] <= 40'h0;
axis_tdata[15:0] <= datain[63:48];
end
IN_USE: begin
if (valid & axis_tready & (eof | err)) begin
// End of packet should always be received in this state.
// If Error is asserted from MAC, immediate EOF is forced,
// and the error flag set in tuser. State machine will return to WAIT
// state and search for new SOF thereby discarding anything left of error packet.
//
// In the case of 3 through 8 valid octets in the final 64bits input,
// we must run another cycle afterwards since we have 6 more bytes still in holding.
err_reg <= err;
holding_reg[47:0] <= datain[47:0];
axis_tdata[63:16] <= holding_reg[47:0];
axis_tdata[15:0] <= datain[63:48];
axis_tvalid <= 1;
case(occ[2:0])
// 8 valid Octets in last word of packet, finish next cycle
0: begin
state <= FLUSHING8;
end
// 7 valid Octets in last word of packet, finish next cycle
7: begin
state <= FLUSHING7;
end
// 6 valid octets in last word of packet, finish next cycle
6: begin
state <= FLUSHING6;
end
// 5 valid octets in last word of packet, finish next cycle
5: begin
state <= FLUSHING5;
end
// 4 valid octets in last word of packet, finish next cycle
4: begin
state <= FLUSHING4;
end
// 3 valid octets in last word of packet, finish next cycle
3: begin
state <= FLUSHING3;
end
// 2 valid octets in last word of packet, finish this cycle
2: begin
axis_tuser <= {err,EOF8};
state <= EMPTY;
axis_tlast <= 1;
end
// 1 valid octets in last word of packet, finish this cycle
1: begin
axis_tuser <= {err,EOF7};
state <= EMPTY;
axis_tlast <= 1;
end
endcase // case (occ[2:0])
end // if (valid & axis_tready & eof)
else if (valid & axis_tready) begin
// No EOF indication so in packet payload somewhere still.
state <= IN_USE;
holding_reg[47:0] <= datain[47:0];
axis_tdata[63:16] <= holding_reg[47:0];
axis_tdata[15:0] <= datain[63:48];
axis_tvalid <= 1;
end
else if (valid & ~axis_tready) begin
// Assert on this condition
$display("ERROR: xge64_to_axi64, valid & ~axis_tready");
// Keep error state asserted ready for downstream to accept
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end else if (~valid) begin
// Assert on this condition, don't expect the MAC to ever throtle dataflow intra-packet.
$display("ERROR: xge64_to_axi64, ~valid ");
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end
end // case: IN_USE
FLUSHING3: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 1 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF1};
axis_tdata[63:16] <= holding_reg[47:0];
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING4: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 2 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF2};
axis_tdata[63:16] <= holding_reg[47:0];
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING5: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 3 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF3};
axis_tdata[63:16] <= holding_reg[47:0];
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING6: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 4 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF4};
axis_tdata[63:16] <= holding_reg[47:0];
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING7: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 5 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF5};
axis_tdata[63:16] <= holding_reg[47:0];
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
FLUSHING8: begin
if (axis_tready) begin
// EOF has been received last cycle.
// Ethernet interframe gap means we don't have to search for back-to-back EOF-SOF here.
// 6 valid Octets to finish
state <= EMPTY;
axis_tlast <= 1;
axis_tuser <= {err_reg, EOF6};
axis_tdata[63:16] <= holding_reg[47:0];
axis_tvalid <= 1;
end else begin
state <= ERROR1;
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end // else: !if(axis_tready)
end
ERROR1: begin
// We were already actively receiving a packet from the upstream MAC and the downstream
// signaled not ready by de-asserting tready. Since we can't back pressure the MAC we have to
// abandon the current packet, discarding any data already sent down stream by sending an asserted error
// with a tlast when ever tready becomes asserted again. Meanwhile we start dropping arriving MAC
// data on the floor since there is nothing useful we can do with it currently.
if (axis_tready)
begin
// OK tready is asserted again so tlast is geting accepted this cycle along with an asserted error.
state <= EMPTY;
end else begin
// Keep error state asserted ready for downstream to accept
axis_tlast <= 1;
axis_tvalid <= 1;
axis_tuser <= {1'b1, EOF8}; // Force error in this packet.
end
end // case: ERROR1
endcase // case(state)
end // else: !if(reset | clear)
endmodule
|