1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
//
// Copyright 2012 Ettus Research LLC
//
// AXI stream to/from wishbone
// Input is an axi stream which wites into a BRAM.
// Output is an axi stream which reads from a BRAM.
// This RAM can also be accessed from a wishbone interface.
// From the wishbone interface we need to be able to:
// Ask the module if a completed packet is available.
// Read number of bytes/lines in the BRAM.
// Release the completed packet.
// Ask the module if an outgoing slot is available.
// Write number of bytes/lines in the BRAM.
// Release the completed packet.
module axi_stream_to_wb
#(
parameter AWIDTH = 13, //WB addr width and buffering size in bytes
parameter UWIDTH = 4, //stream user width
parameter CTRL_ADDR = 0 //ctrl/status register
)
(
//-- the wishbone interface
input clk_i, input rst_i,
input we_i, input stb_i, input cyc_i, output reg ack_o,
input [AWIDTH-1:0] adr_i, input [31:0] dat_i, output reg [31:0] dat_o,
//-- the axi stream interface input
input [63:0] rx_tdata,
input [3:0] rx_tuser,
input rx_tlast,
input rx_tvalid,
output rx_tready,
//-- the axi stream interface output
output [63:0] tx_tdata,
output [3:0] tx_tuser,
output tx_tlast,
output tx_tvalid,
input tx_tready,
output [31:0] debug_rx,
output [31:0] debug_tx
);
reg stb_i_del;
always @(posedge clk_i) begin
if (rst_i) stb_i_del <= 0;
else stb_i_del <= stb_i;
end
reg ack_o_del;
always @(posedge clk_i) begin
if (rst_i) ack_o_del <= 0;
else ack_o_del <= ack_o;
end
//drive the ack signal
always @(posedge clk_i) begin
if (rst_i) ack_o <= 0;
else if (we_i) ack_o <= stb_i & ~ack_o;
else ack_o <= stb_i & stb_i_del & ~ack_o & ~ack_o_del;
end
//control registers, status
reg [AWIDTH-1:0] tx_bytes, rx_bytes;
reg tx_error, rx_error;
wire rx_state_flag, tx_state_flag;
reg rx_proc_flag, tx_proc_flag;
//assign status
wire [31:0] status;
assign status[31] = rx_state_flag;
assign status[30] = tx_state_flag;
assign status[29] = rx_error;
assign status[AWIDTH-1:0] = rx_bytes;
// Create some piplining to break timing paths.
reg ctrl_addressed;
always @(posedge clk_i)
if (rst_i)
ctrl_addressed <= 1'b0;
else if(adr_i == CTRL_ADDR)
ctrl_addressed <= 1'b1;
else
ctrl_addressed <= 1'b0;
//assign control
always @(posedge clk_i) begin
if (rst_i) begin
rx_proc_flag <= 0;
tx_proc_flag <= 0;
tx_error <= 0;
tx_bytes <= 0;
end
else if (we_i && ack_o && ctrl_addressed) begin
rx_proc_flag <= dat_i[31];
tx_proc_flag <= dat_i[30];
tx_error <= dat_i[29];
tx_bytes <= dat_i[AWIDTH-1:0];
end
end
//------------------------------------------------------------------
//-- block ram interface between wb and input stream
//------------------------------------------------------------------
reg [AWIDTH-4:0] rx_counter;
wire [63:0] rx_bram_data64;
ram_2port #(.DWIDTH(64), .AWIDTH(AWIDTH-3)) input_stream_bram
(
.clka(clk_i), .ena(rx_tready), .wea(rx_tvalid),
.addra(rx_counter), .dia(rx_tdata), .doa(),
.clkb(clk_i), .enb(stb_i), .web(1'b0),
.addrb(adr_i[AWIDTH-1:3]), .dib({64{1'b1}}), .dob(rx_bram_data64)
);
//select the data source, status, or upper/lower 32 from bram
wire [31:0] dat_o_pipeline;
assign dat_o_pipeline = ctrl_addressed ? status : ((!adr_i[2])? rx_bram_data64[63:32]: rx_bram_data64[31:0]);
always @(posedge clk_i) begin
dat_o <= dat_o_pipeline;
end
//------------------------------------------------------------------
//-- block ram interface between wb and output stream
//------------------------------------------------------------------
reg [AWIDTH-4:0] tx_counter;
wire enb_out;
wire [63:0] tx_bram_data64;
ram_2port #(.DWIDTH(64), .AWIDTH(AWIDTH-3)) output_stream_bram
(
.clka(clk_i), .ena(enb_out), .wea(1'b0),
.addra(tx_counter), .dia({64{1'b1}}), .doa(tx_tdata),
.clkb(clk_i), .enb(stb_i), .web(we_i && adr_i[2]),
.addrb(adr_i[AWIDTH-1:3]), .dib(tx_bram_data64), .dob()
);
//write 64 bit chunks, so register the lower write
reg [31:0] dat_i_reg;
always @(posedge clk_i) begin
if (we_i && stb_i && !adr_i[2]) dat_i_reg <= dat_i;
end
assign tx_bram_data64 = {dat_i_reg, dat_i};
//------------------------------------------------------------------
//-- state machine to drive input stream
//------------------------------------------------------------------
localparam RX_STATE_READY = 0; //waits for proc flag 0
localparam RX_STATE_WRITE = 1; //writes stream to bram
localparam RX_STATE_RELEASE = 2; //waits for proc to flag 1
reg [1:0] rx_state;
always @(posedge clk_i) begin
if (rst_i) begin
rx_state <= RX_STATE_READY;
rx_counter <= 0;
rx_error <= 0;
rx_bytes <= 0;
end
else case (rx_state)
RX_STATE_READY: begin
if (!rx_proc_flag) rx_state <= RX_STATE_WRITE;
rx_counter <= 0;
end
RX_STATE_WRITE: begin
if (rx_tready && rx_tvalid) begin
rx_counter <= rx_counter + 1'b1;
if (rx_tlast) begin
rx_state <= RX_STATE_RELEASE;
rx_bytes <= {rx_counter + 1'b1, rx_tuser[2:0]};
rx_error <= rx_tuser[3];
end
end
end
RX_STATE_RELEASE: begin
if (rx_proc_flag) rx_state <= RX_STATE_READY;
rx_counter <= 0;
end
default: rx_state <= RX_STATE_READY;
endcase //rx_state
end
//flag tells the processor when it can grab some input buffer
assign rx_state_flag = (rx_state == RX_STATE_RELEASE);
//always ready to accept input data in the write state
assign rx_tready = (rx_state == RX_STATE_WRITE);
//------------------------------------------------------------------
//-- state machine to drive output stream
//------------------------------------------------------------------
localparam TX_STATE_READY = 0; //waits for proc flag 0
localparam TX_STATE_WRITE = 1; //writes bram to stream
localparam TX_STATE_RELEASE = 2; //waits for proc to flag 1
reg [1:0] tx_state;
always @(posedge clk_i) begin
if (rst_i) begin
tx_state <= TX_STATE_READY;
tx_counter <= 0;
end
else case (tx_state)
TX_STATE_READY: begin
if (tx_proc_flag) begin
tx_state <= TX_STATE_WRITE;
tx_counter <= 1;
end
else tx_counter <= 0;
end
TX_STATE_WRITE: begin
if (tx_tready && tx_tvalid) begin
tx_counter <= tx_counter + 1'b1;
if (tx_tlast) begin
tx_state <= TX_STATE_RELEASE;
end
end
end
TX_STATE_RELEASE: begin
if (!tx_proc_flag) tx_state <= TX_STATE_READY;
tx_counter <= 0;
end
default: tx_state <= TX_STATE_READY;
endcase //tx_state
end
//flag tells the processor when it can grab available out buffer
assign tx_state_flag = (tx_state == TX_STATE_READY);
//the output user bus assignment (non-zero only at end)
assign tx_tuser = (tx_tlast)? {tx_error, tx_bytes[2:0]} : 4'b0;
//end of frame signal
assign tx_tlast = (tx_counter == tx_bytes[AWIDTH-1:3]);
//output is always valid in state write
assign tx_tvalid = (tx_state == TX_STATE_WRITE);
//enable the read so we can pre-read due to read 1 cycle delay
assign enb_out = (tx_state == TX_STATE_WRITE)? (tx_tvalid && tx_tready) : 1'b1;
assign debug_rx = {
rx_state, rx_tlast, rx_tvalid, rx_tready, rx_tuser[2:0], //8
rx_proc_flag, rx_state_flag, rx_tdata[21:0] //24
};
assign debug_tx = {
tx_state, tx_tlast, tx_tvalid, tx_tready, tx_tuser[2:0], //8
tx_proc_flag, tx_state_flag, tx_tdata[21:0] //24
};
endmodule //axi_stream_to_wb
|