aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/lib/vivado_ipi/axi_bitq/axi_bitq.vhd
blob: 322f706a484cae4fe001ab8a6fe51bcdcac69b2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
--
-- Copyright 2018 Ettus Research, A National Instruments Company
--
-- SPDX-License-Identifier: LGPL-3.0
--
-- Module: axi_bitq
-- Description: Simple IP to shift bits in/out (primarily for JTAG)
-- axi_bitq is the processor interface to the bitq_fsm module

library ieee;
use ieee.std_logic_1164.all;

library work;
use work.bitq_fsm;

entity axi_bitq is
port (
  bit_clk  : inout std_logic;
  bit_in   : in    std_logic;
  bit_out  : inout std_logic;
  bit_stb  : inout std_logic;

  S_AXI_ACLK     : in  std_logic;
  S_AXI_ARESETN  : in  std_logic;
  S_AXI_AWADDR   : in  std_logic_vector(3 downto 0);
  S_AXI_AWVALID  : in  std_logic;
  S_AXI_AWREADY  : out std_logic;
  S_AXI_WDATA    : in  std_logic_vector(31 downto 0);
  S_AXI_WSTRB    : in  std_logic_vector(3 downto 0);
  S_AXI_WVALID   : in  std_logic;
  S_AXI_WREADY   : out std_logic;
  S_AXI_BRESP    : out std_logic_vector(1 downto 0);
  S_AXI_BVALID   : out std_logic;
  S_AXI_BREADY   : in  std_logic;
  S_AXI_ARADDR   : in  std_logic_vector(3 downto 0);
  S_AXI_ARVALID  : in  std_logic;
  S_AXI_ARREADY  : out std_logic;
  S_AXI_RDATA    : out std_logic_vector(31 downto 0);
  S_AXI_RRESP    : out std_logic_vector(1 downto 0);
  S_AXI_RVALID   : out std_logic;
  S_AXI_RREADY   : in  std_logic
);
end axi_bitq;

architecture arch of axi_bitq is
  signal read_token       : std_logic;
  signal write_addr       : std_logic_vector(3 downto 0);
  signal write_strb       : std_logic_vector(3 downto 0);
  signal write_addr_token : std_logic;
  signal write_data       : std_logic_vector(31 downto 0);
  signal write_data_token : std_logic;

  signal wr_data          : std_logic_vector(31 downto 0);
  signal stb_data         : std_logic_vector(31 downto 0);
  signal rd_data          : std_logic_vector(31 downto 0);
  signal prescalar        : std_logic_vector(7 downto 0);
  signal len              : std_logic_vector(4 downto 0);
  signal ready            : std_logic;
  signal start            : std_logic;
  signal bitq_rstn        : std_logic;
  signal bitq_soft_rst    : std_logic;

begin

  S_AXI_ARREADY <= not read_token;
  S_AXI_RVALID <= read_token;
  S_AXI_RRESP <= "00";

  S_AXI_AWREADY <= not write_addr_token;
  S_AXI_WREADY <= not write_data_token;
  S_AXI_BVALID <= write_addr_token and write_data_token;
  S_AXI_BRESP <= "00";

  --Register reads
  read_proc : process (S_AXI_ACLK)
    variable read_addr : std_logic_vector(S_AXI_ARADDR'left downto S_AXI_ARADDR'right+2);
  begin
  if rising_edge(S_AXI_ACLK) then
    read_addr := S_AXI_ARADDR(S_AXI_ARADDR'left downto S_AXI_ARADDR'right+2);

    if (S_AXI_ARESETN = '0') then
      read_token <= '0';
    elsif (S_AXI_ARVALID = '1') and (read_token = '0') then
      read_token <= '1';
    elsif (S_AXI_RREADY = '1') and (read_token = '1') then
      read_token <= '0';
    end if;

    if (S_AXI_ARVALID = '1') and (read_token = '0') then
      S_AXI_RDATA <= (others => '0');

      case read_addr is
      when "00" => 
        S_AXI_RDATA(31 downto 0) <= wr_data;
      when "01" =>
        S_AXI_RDATA(31 downto 0) <= stb_data;
      when "10" =>
        S_AXI_RDATA(7 downto 0) <= prescalar;
        S_AXI_RDATA(12 downto 8) <= len;
        S_AXI_RDATA(31) <= ready;
      when "11" =>
        S_AXI_RDATA(31 downto 0) <= rd_data;
      when others =>
        null;
      end case;

    end if;
  end if;
  end process read_proc;

  write_proc : process (S_AXI_ACLK)
  begin
  if rising_edge(S_AXI_ACLK) then
    if (S_AXI_ARESETN = '0') then
      write_addr_token <= '0';
      write_data_token <= '0';
      write_strb <= (others => '0');
    else
      if (S_AXI_AWVALID = '1') and (write_addr_token = '0') then
        write_addr_token <= '1';
      elsif (S_AXI_BREADY = '1') and (write_addr_token = '1') and (write_data_token = '1') then
        write_addr_token <= '0';
      end if;

      if (S_AXI_WVALID = '1') and (write_data_token = '0') then
        write_data_token <= '1';
      elsif (S_AXI_BREADY = '1') and (write_addr_token = '1') and (write_data_token = '1') then
        write_data_token <= '0';
      end if;
    end if;

    if (S_AXI_AWVALID = '1') and (write_addr_token = '0') then
      write_addr <= S_AXI_AWADDR;
    end if;

    if (S_AXI_WVALID = '1') and (write_data_token = '0') then
      write_data <= S_AXI_WDATA;
      write_strb <= S_AXI_WSTRB;
    end if;
  end if;
  end process write_proc;

  write_reg : process (S_AXI_ACLK)
  begin
  if rising_edge(S_AXI_ACLK) then
    bitq_soft_rst <= '0';
    start <= '0';

    if (S_AXI_ARESETN = '0') or (bitq_soft_rst = '1') then
      bitq_soft_rst <= '0';
      start <= '0';
    elsif (write_addr_token = '1') and (write_data_token = '1') then
      case write_addr(write_addr'left downto 2) is
      when "00" => 
        if (write_strb(0) = '1') and (ready = '1') then
          wr_data(7 downto 0) <= write_data(7 downto 0);
        end if;
        if (write_strb(1) = '1') and (ready = '1') then
          wr_data(15 downto 8) <= write_data(15 downto 8);
        end if;
        if (write_strb(2) = '1') and (ready = '1') then
          wr_data(23 downto 16) <= write_data(23 downto 16);
        end if;
        if (write_strb(3) = '1') and (ready = '1') then
          wr_data(31 downto 24) <= write_data(31 downto 24);
        end if;
      when "01" => 
        if (write_strb(0) = '1') and (ready = '1') then
          stb_data(7 downto 0) <= write_data(7 downto 0);
        end if;
        if (write_strb(1) = '1') and (ready = '1') then
          stb_data(15 downto 8) <= write_data(15 downto 8);
        end if;
        if (write_strb(2) = '1') and (ready = '1') then
          stb_data(23 downto 16) <= write_data(23 downto 16);
        end if;
        if (write_strb(3) = '1') and (ready = '1') then
          stb_data(31 downto 24) <= write_data(31 downto 24);
        end if;
      when "10" =>
        if (write_strb(0) = '1') and (ready = '1') then
          prescalar <= write_data(7 downto 0);
        end if;
        if (write_strb(1) = '1') and (ready = '1') then
          len <= write_data(12 downto 8);
          if (write_strb(3) = '0') or (write_data(31) = '0') then
            start <= '1';
          end if;
        end if;
        if (write_strb(3) = '1') then
          bitq_soft_rst <= write_data(31);
        end if;
      when "11" => --Read only register
        null;
      when others =>
        null;
      end case;
    end if;
  end if;
  end process write_reg;

  bitq_rstn <= '0' when (S_AXI_ARESETN = '0') or (bitq_soft_rst = '1') else '1';

  bitq_ctrl : entity bitq_fsm
  port map (
    clk  => S_AXI_ACLK,
    rstn => S_AXI_ARESETN,
    prescalar => prescalar,
  
    bit_clk  => bit_clk,
    bit_in   => bit_in,
    bit_out  => bit_out,
    bit_stb  => bit_stb,
    start    => start,
    len      => len,
    ready    => ready,
    wr_data  => wr_data,
    stb_data => stb_data,
    rd_data  => rd_data
  );

end arch;