blob: 74d56e1f86622e403aea04f5167aeb1332c2b514 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
//
// Copyright 2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
module iq_to_float
#(parameter BITS_IN =16,
parameter BITS_OUT = 32
)
(
input [15:0] in,
output [31:0] out
);
//imaginary
//2s complement
wire [15:0] unsigned_mag;
wire [15:0] complement;
//leading bit registers
wire [15:0] lead;
wire [15:0] reversed_mag;
//16-4 encoder
wire [3:0] binary_out;
wire [22:0] fraction;
wire [7:0] exponent;
wire [15:0] binary_in;
binary_encoder #(.SIZE(16))
encoding (.in(binary_in),.out(binary_out));
// Detect sign, if negative detected perform 2's complement
assign unsigned_mag = (in[15] == 1)?((~in[15:0])+1'b1):in[15:0];
//detect leading one
assign complement = ((~reversed_mag[BITS_IN-1:0])+1'b1);
assign lead = complement & reversed_mag;
//calculate fraction and exponent using shift value generated
wire [15:0] pre_frac = unsigned_mag << ((15 - binary_out));
assign fraction = {pre_frac[14:0],8'h0};
assign exponent = (in == 16'b0)?(8'b0):(binary_out +'d127);
//construct the output
assign out = {in[15], exponent, fraction};
//reverse the signed input
genvar r;
generate
for (r = 0; r < 16; r = r+1) begin:bit_reverse
assign reversed_mag[r] = unsigned_mag[BITS_IN-r-1];
end
endgenerate
//reversed the output of the detect the leading bit procedure
genvar i;
generate
for (i= 0; i < 16; i = i+1) begin: i_rev
assign binary_in[i] = lead[BITS_IN-i-1];
end
endgenerate
endmodule
|