1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
//
// Copyright 2013, 2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
module chdr_16s_to_8s
#(
parameter BASE=0
)
(
input clk,
input rst,
// axi4 stream slave interface
input [63:0] i_tdata,
input i_tlast,
input i_tvalid,
output i_tready,
// axi4 stream master interface
output reg [63:0] o_tdata,
output o_tlast,
output o_tvalid,
input o_tready,
// settings bus slave interface
input set_stb,
input [7:0] set_addr,
input [31:0] set_data,
output [31:0] debug
);
// split up for lazyness reasons
wire [15:0] fixed0 = i_tdata[63:48];
wire [15:0] fixed1 = i_tdata[47:32];
wire [15:0] fixed2 = i_tdata[31:16];
wire [15:0] fixed3 = i_tdata[15:0];
wire [7:0] rounded_cur0;
wire [7:0] rounded_cur1;
wire [7:0] rounded_cur2;
wire [7:0] rounded_cur3;
// Parse CHDR info
wire chdr_has_time = i_tdata[61];
// CHDR has either 8 bytes of header or 16 if VITA time is included.
wire [15:0] chdr_header_bytes = chdr_has_time ? 16 : 8;
// Calculate size of samples input in bytes by taking CHDR size filed
// and subtracting header length.
wire [15:0] sample_byte_count_in = i_tdata[47:32] - chdr_header_bytes;
// Calculate size of samples to be output by taking input size
// and dividing by two as sizeof(Q15) = 2*sizeof(Q7)
wire [15:0] sample_byte_count_out = sample_byte_count_in >> 1;
// Calculate size of output CHDR packet by adding back header size to new
// payload size.
wire [15:0] output_chdr_pkt_size = sample_byte_count_out + chdr_header_bytes;
// Make routing (SID) available via settings bus
wire set_sid;
wire [15:0] new_sid_dst;
setting_reg #
(
.my_addr(BASE),
.width(17)
)
new_destination
(
.clk(clk),
.rst(rst),
.strobe(set_stb),
.addr(set_addr),
.in(set_data),
.out({set_sid, new_sid_dst[15:0]}),
.changed()
);
wire handshake_ok = o_tready & i_tvalid;
reg [7:0] rounded_old0;
reg [7:0] rounded_old1;
reg [7:0] rounded_old2;
reg [7:0] rounded_old3;
// respect your elders, yo
always @ (posedge clk)
if (rst)
{rounded_old0, rounded_old1, rounded_old2, rounded_old3} <= 32'h0;
else if (handshake_ok) begin
{rounded_old0, rounded_old1} <= {rounded_cur0, rounded_cur1};
{rounded_old2, rounded_old3} <= {rounded_cur2, rounded_cur3};
end
localparam HEADER = 2'd0;
localparam TIME = 2'd1;
localparam PREPARE = 2'd2;
localparam OUTPUT = 2'd3;
reg [1:0] state;
always @(posedge clk) begin
if (rst)
state <= HEADER;
else case(state)
HEADER:
// In case we see a i_last we just wait for the
// next header here, otherwise move on to the next states
if (handshake_ok & !i_tlast)
state <= chdr_has_time ? TIME : PREPARE;
TIME:
// If we get a premature end of burst go back
// to searching for the start of a new packet
if (handshake_ok)
state <= i_tlast ? HEADER: PREPARE;
PREPARE:
if (handshake_ok)
state <= i_tlast ? HEADER: OUTPUT;
OUTPUT:
if (handshake_ok)
state <= i_tlast ? HEADER: PREPARE;
default:
state <= HEADER;
endcase
end
round #
(
.bits_in(16),
.bits_out(8)
)
round0
(
.in(fixed0),
.out(rounded_cur0),
.err()
);
round #
(
.bits_in(16),
.bits_out(8)
)
round1
(
.in(fixed1),
.out(rounded_cur1),
.err()
);
round #
(
.bits_in(16),
.bits_out(8)
)
round2
(
.in(fixed2),
.out(rounded_cur2),
.err()
);
round #
(
.bits_in(16),
.bits_out(8))
round3
(
.in(fixed3),
.out(rounded_cur3),
.err()
);
always @(*)
case(state)
HEADER:
o_tdata = {i_tdata[63:48], output_chdr_pkt_size,
set_sid ? {i_tdata[15:0], new_sid_dst[15:0]} : i_tdata[31:0]};
TIME:
o_tdata = i_tdata;
PREPARE:
// Here the second half of this stuff is invalid, as the header will
// take care of that by setting the correct length field,
// we assign the same to simplify the mux
o_tdata = {rounded_cur0, rounded_cur1, rounded_cur2, rounded_cur3,
rounded_cur0, rounded_cur1, rounded_cur2, rounded_cur3};
OUTPUT:
o_tdata = {rounded_old0, rounded_old1, rounded_old2, rounded_old3,
rounded_cur0, rounded_cur1, rounded_cur2, rounded_cur3};
default:
o_tdata = i_tdata;
endcase
assign o_tvalid = i_tvalid && (state != PREPARE || i_tlast);
assign i_tready = o_tready || (state == PREPARE && !i_tlast);
assign o_tlast = i_tlast;
endmodule
|