aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/lib/vita_200/chdr_16s_to_32f.v
blob: 2e4ff76d2ae3881b0172d0143c55981b5a2e28ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
//
// Copyright 2013 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//

module chdr_16s_to_32f #
(
  parameter BASE = 0
)
(
  input              clk,
  input              rst,

  // axi4 stream slave interface
  input [63:0]       i_tdata,
  input              i_tvalid,
  input              i_tlast,
  output             i_tready,

  // axi4 stream master interface
  output reg [63:0]  o_tdata,
  output             o_tvalid,
  output             o_tlast,
  input              o_tready,

  // settings bus slave interface
  input              set_stb,
  input [7:0]        set_addr,
  input [31:0]       set_data,

  output [63:0]      debug
);

  reg [1:0] state;
  localparam HEADER  = 2'd0;
  localparam TIME    = 2'd1;
  localparam ODD     = 2'd2;
  localparam EVEN    = 2'd3;

  // split up the input for lazyness reasons
  wire [15:0] fixed0 = i_tdata[63:48];
  wire [15:0] fixed1 = i_tdata[47:32];
  wire [15:0] fixed2 = i_tdata[31:16];
  wire [15:0] fixed3 = i_tdata[15:0];

  // mux the inputs
  wire [15:0] fixed_muxed0 = (state == ODD) ? fixed0 : fixed2;
  wire [15:0] fixed_muxed1 = (state == ODD) ? fixed1 : fixed3;

  wire [31:0] float0;
  wire [31:0] float1;

  // Parametrize the converter as Q15 to IEEE 754 single precision float
  xxs_to_xxf #
  (
    .FBITS(32),
    .MBITS(23),
    .EBITS(8),
    .RADIX(15),
    .QWIDTH(16)
  ) q2f0
  (
    .i_fixed(fixed_muxed0),
    .o_float(float0)
  );

  // Parametrize the converter as Q15 to IEEE 754 single precision float
  xxs_to_xxf #
  (
    .FBITS(32),
    .MBITS(23),
    .EBITS(8),
    .RADIX(15),
    .QWIDTH(16)
  ) q2f1
  (
    .i_fixed(fixed_muxed1),
    .o_float(float1)
  );

  // Make routing (SID) available via settings bus
  wire        set_sid;
  wire [15:0] new_sid_dst;

  setting_reg #
  (
    .my_addr(BASE),
    .width(17)
  ) new_destination
  ( .clk(clk),
    .rst(rst),
    .strobe(set_stb),
    .addr(set_addr),
    .in(set_data),
    .out({set_sid, new_sid_dst[15:0]}),
    .changed()
  );

  // Parse CHDR info
  wire        chdr_has_time = i_tdata[61];
  // CHDR has either 8 bytes of header or 16 if VITA time is included.
  wire [15:0] chdr_header_bytes = chdr_has_time ? 16 : 8;
  // Calculate size of samples input in bytes by taking CHDR size field
  // and subtracting header length.
  wire [15:0] sample_byte_count_in = i_tdata[47:32] - chdr_header_bytes;
  // Calculate size of samples to be EVEN by taking input size
  // and multiplying by two as sizeof(float) = 2 * sizeof(Q15)
  wire [15:0] sample_byte_count_out = sample_byte_count_in << 1;
  // Calculate size of output CHDR packet by adding back header size to new
  // payload size.
  wire [15:0] output_chdr_pkt_size = sample_byte_count_out + chdr_header_bytes;

  reg end_on_odd;

  always @(posedge clk)
    if (rst) begin
      state <= HEADER;
      end_on_odd <= 1'b0;
    end

    else case(state)
      HEADER:
        if (o_tready && i_tvalid) begin
          state <= chdr_has_time ? TIME : ODD;
          end_on_odd <= |sample_byte_count_in[2:0];
        end

      TIME:
        if (o_tready && i_tvalid) begin
          // If we get a premature end of burst go back
          // to searching for the start of a new packet.
          state <= i_tlast ? HEADER : ODD;
        end

      ODD:
        if (o_tready && i_tvalid) begin
          state <= (i_tlast && end_on_odd) ? HEADER : EVEN;
        end

      EVEN:
        if (o_tready && i_tvalid) begin
          state <= i_tlast ? HEADER : ODD;
        end

      default:
        state <= HEADER;
    endcase

  always @(*)
    case(state)
      // Populate header with CHDR fields
      HEADER:
        o_tdata = {i_tdata[63:48], output_chdr_pkt_size,
                   set_sid ? {i_tdata[15:0], new_sid_dst[15:0]} : i_tdata[31:0]};
      TIME:
        o_tdata = i_tdata;
      ODD:
        o_tdata = {float0, float1};
      EVEN:
        o_tdata = {float0, float1};
      default :
        o_tdata = i_tdata;
    endcase

  assign o_tvalid  = i_tvalid;
  assign i_tready  = (o_tready && state != ODD) || (i_tlast && end_on_odd);
  assign o_tlast   = i_tlast && ((state == EVEN) || (state == ODD) && end_on_odd);

endmodule