1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
|
//
// Copyright 2014 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Define MDIO to add support for clause 22 and clause 45 MDIO interface
`define MDIO
// If WB clock is 62.5MHz and max MDC spec is 2.5MHz, then divide by 25
//`define MDC_HALF_PERIOD 13 // Closest int to 12.5
`define MDC_HALF_PERIOD 100
// Registers
`define CPUREG_MDIO_DATA 8'h10
`define CPUREG_MDIO_ADDR 8'h14
`define CPUREG_MDIO_OP 8'h18
`define CPUREG_MDIO_CONTROL 8'h1c
`define CPUREG_MDIO_STATUS 8'h1c
`define CPUREG_GPIO 8'h20
module mdio
(
// Wishbone Bus
input wb_clk_i,
input wb_rst_i,
input [7:0] wb_adr_i,
input [31:0] wb_dat_i,
input wb_we_i,
input wb_stb_i,
input wb_cyc_i,
output reg [31:0] wb_dat_o,
output wb_ack_o,
output reg wb_int_o,
// MDIO
output reg mdc,
output reg mdio_out,
output reg mdio_tri,
input mdio_in
);
//
// State Declarations
//
parameter
IDLE = 0,
PREAMBLE1 = 1,
PREAMBLE2 = 2,
PREAMBLE3 = 3,
PREAMBLE4 = 4,
PREAMBLE5 = 5,
PREAMBLE6 = 6,
PREAMBLE7 = 7,
PREAMBLE8 = 8,
PREAMBLE9 = 9,
PREAMBLE10 = 10,
PREAMBLE11 = 11,
PREAMBLE12 = 12,
PREAMBLE13 = 13,
PREAMBLE14 = 14,
PREAMBLE15 = 15,
PREAMBLE16 = 16,
PREAMBLE17 = 17,
PREAMBLE18 = 18,
PREAMBLE19 = 19,
PREAMBLE20 = 20,
PREAMBLE21 = 21,
PREAMBLE22 = 22,
PREAMBLE23 = 23,
PREAMBLE24 = 24,
PREAMBLE25 = 25,
PREAMBLE26 = 26,
PREAMBLE27 = 27,
PREAMBLE28 = 28,
PREAMBLE29 = 29,
PREAMBLE30 = 30,
PREAMBLE31 = 31,
PREAMBLE32 = 32,
START1 = 33,
C22_START2 = 34,
C45_START2 = 35,
OP1 = 36,
OP2 = 37,
PRTAD1 = 38,
PRTAD2 = 39,
PRTAD3 = 40,
PRTAD4 = 41,
PRTAD5 = 42,
DEVAD1 = 43,
DEVAD2 = 44,
DEVAD3 = 45,
DEVAD4 = 46,
DEVAD5 = 47,
TA1 = 48,
TA2 = 49,
TA3 = 50,
READ1 = 51,
READ2 = 52,
READ3 = 53,
READ4 = 54,
READ5 = 55,
READ6 = 56,
READ7 = 57,
READ8 = 58,
READ9 = 59,
READ10 = 60,
READ11 = 61,
READ12 = 62,
READ13 = 63,
READ14 = 64,
READ15 = 65,
READ16 = 66,
WRITE1 = 67,
WRITE2 = 68,
WRITE3 = 69,
WRITE4 = 70,
WRITE5 = 71,
WRITE6 = 72,
WRITE7 = 73,
WRITE8 = 74,
WRITE9 = 75,
WRITE10 = 76,
WRITE11 = 77,
WRITE12 = 78,
WRITE13 = 79,
WRITE14 = 80,
WRITE15 = 81,
WRITE16 = 82,
C45_ADDR1 = 83,
C45_ADDR2 = 84,
C45_ADDR3 = 85,
C45_ADDR4 = 86,
C45_ADDR5 = 87,
C45_ADDR6 = 88,
C45_ADDR7 = 89,
C45_ADDR8 = 90,
C45_ADDR9 = 91,
C45_ADDR10 = 92,
C45_ADDR11 = 93,
C45_ADDR12 = 94,
C45_ADDR13 = 95,
C45_ADDR14 = 96,
C45_ADDR15 = 97,
C45_ADDR16 = 98,
PREIDLE = 99;
reg cpuack;
reg [15:0] mdio_read_data;
reg [15:0] mdio_write_data;
reg [15:0] mdio_address;
reg [12:0] mdio_operation;
reg mdio_control;
reg [7:0] mdc_clk_count;
reg mdc_falling_edge;
reg mdio_running;
reg mdio_done;
reg [7:0] state;
assign wb_ack_o = cpuack && wb_stb_i;
always @(posedge wb_clk_i or posedge wb_rst_i) begin
if (wb_rst_i == 1'b1) begin
wb_dat_o <= 32'b0;
wb_int_o <= 1'b0;
cpuack <= 1'b0;
mdio_address <= 0;
mdio_operation <= 0;
mdio_write_data <= 0;
mdio_running <= 0;
end
else begin
wb_int_o <= 1'b0;
cpuack <= wb_cyc_i && wb_stb_i;
// Handshake to MDIO state machine to reset running flag in status.
// Wait for falling MDC edge to prevent S/W race condition occuring
// where done flag still asserted but running flag now cleared (repeatedly).
if (mdio_done && mdc_falling_edge)
mdio_running <= 0;
//
// Read access
//
if (wb_cyc_i && wb_stb_i && !wb_we_i) begin
case ({wb_adr_i[7:2], 2'b0})
`CPUREG_MDIO_DATA: begin
wb_dat_o <= {16'b0, mdio_read_data};
end
`CPUREG_MDIO_STATUS: begin
wb_dat_o <= {31'b0, mdio_running};
end
default: begin
end
endcase
end
//
// Write access
//
if (wb_cyc_i && wb_stb_i && wb_we_i) begin
$display("reg write @ addr %x",({wb_adr_i[7:2], 2'b0}));
case ({wb_adr_i[7:2], 2'b0})
`CPUREG_MDIO_DATA: begin
mdio_write_data <= wb_dat_i[15:0];
end
`CPUREG_MDIO_ADDR: begin
mdio_address <= wb_dat_i[15:0];
end
`CPUREG_MDIO_OP: begin
mdio_operation <= wb_dat_i[12:0];
end
`CPUREG_MDIO_CONTROL: begin
// Trigger mdio operation here. Cleared by state machine at end of bus transaction.
if (wb_dat_i[0])
mdio_running <= 1;
end
default: begin
end
endcase
end
end
end // always @ (posedge wb_clk_i or posedge wb_rst_i)
//
// Produce mdc clock as a signal synchronously from Wishbone clock.
//
always @(posedge wb_clk_i or posedge wb_rst_i)
if (wb_rst_i)
begin
mdc_clk_count <= 1;
mdc <= 0;
mdc_falling_edge <= 0;
end
else if (mdc_clk_count == `MDC_HALF_PERIOD)
begin
mdc_clk_count <= 1;
mdc <= ~mdc;
mdc_falling_edge <= mdc;
end
else
begin
mdc_clk_count <= mdc_clk_count + 1;
mdc_falling_edge <= 0;
end
//
// MDIO state machine
//
always @(posedge wb_clk_i or posedge wb_rst_i)
if (wb_rst_i)
begin
mdio_tri <= 1;
mdio_out <= 0;
mdio_done <= 0;
mdio_read_data <= 0;
state <= IDLE;
end
else if (mdc_falling_edge)
//
// This is the MDIO bus controller. Use falling edge of MDC.
//
begin
// Defaults
mdio_tri <= 1;
mdio_out <= 0;
mdio_done <= 0;
case(state)
// IDLE.
// In Clause 22 & 45 the master of the MDIO bus is tristate during idle.
//
IDLE: begin
mdio_tri <= 1;
mdio_out <= 0;
if (mdio_running)
state <= PREAMBLE1;
end
// Preamble. All MDIO transactions begin witrh 32bits of 1 bits as a preamble.
PREAMBLE1: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE2;
end
PREAMBLE2: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE3;
end
PREAMBLE3: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE4;
end
PREAMBLE4: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE5;
end
PREAMBLE5: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE6;
end
PREAMBLE6: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE7;
end
PREAMBLE7: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE8;
end
PREAMBLE8: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE9;
end
PREAMBLE9: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE10;
end
PREAMBLE10: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE11;
end
PREAMBLE11: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE12;
end
PREAMBLE12: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE13;
end
PREAMBLE13: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE14;
end
PREAMBLE14: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE15;
end
PREAMBLE15: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE16;
end
PREAMBLE16: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE17;
end
PREAMBLE17: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE18;
end
PREAMBLE18: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE19;
end
PREAMBLE19: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE20;
end
PREAMBLE20: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE21;
end
PREAMBLE21: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE22;
end
PREAMBLE22: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE23;
end
PREAMBLE23: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE24;
end
PREAMBLE24: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE25;
end
PREAMBLE25: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE26;
end
PREAMBLE26: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE27;
end
PREAMBLE27: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE28;
end
PREAMBLE28: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE29;
end
PREAMBLE29: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE30;
end
PREAMBLE30: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE31;
end
PREAMBLE31: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= PREAMBLE32;
end
PREAMBLE32: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= START1;
end
//
// Start code for Clause 22 is 01 and Clause 45 is 00
//
START1: begin
mdio_tri <= 0;
mdio_out <= 0;
if (mdio_operation[12])
// Clause 45 bit set.
state <= C45_START2;
else
state <= C22_START2;
end
//
// 2nd Clause 22 start bit is a 1
//
C22_START2: begin
mdio_tri <= 0;
mdio_out <= 1;
state <= OP1;
end
//
// 2nd Clause 45 start bit is a 0
//
C45_START2: begin
mdio_tri <= 0;
mdio_out <= 0;
state <= OP1;
end
//
// Both Clause 22 & 45 use 2 bits for operation and are compatable.
// Note we don't screen here for illegal Clause 22 ops.
//
OP1: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[11];
state <= OP2;
end
OP2: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[10];
state <= PRTAD1;
end
//
// Both Clause 22 & 45 use 2 sucsessive 5 bit fields to form a hierarchical address
// though it's used slightly different between the 2 standards.
//
PRTAD1: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[9];
state <= PRTAD2;
end
PRTAD2: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[8];
state <= PRTAD3;
end
PRTAD3: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[7];
state <= PRTAD4;
end
PRTAD4: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[6];
state <= PRTAD5;
end
PRTAD5: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[5];
state <= DEVAD1;
end
DEVAD1: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[4];
state <= DEVAD2;
end
DEVAD2: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[3];
state <= DEVAD3;
end
DEVAD3: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[2];
state <= DEVAD4;
end
DEVAD4: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[1];
state <= DEVAD5;
end
DEVAD5: begin
mdio_tri <= 0;
mdio_out <= mdio_operation[0];
state <= TA1;
end
//
// Both Clause 22 & Clause 45 use the same turn around on the bus.
// Reads have Z as the first bit and 0 driven by the slave for the 2nd bit.
// Note that slaves drive the bus on the rising edge of MDC.
// Writes and Address cycles have 10 driven by the master.
//
TA1: begin
// Clause22 write or clause45 write or address go to state TA2
if ((mdio_operation[12:11] == 2'b10) || (mdio_operation[12:11] == 2'b01))
begin
mdio_tri <= 0;
mdio_out <= 1;
state <= TA2;
end
else // Read
begin
mdio_tri <= 1;
state <= TA3;
end
end
TA2: begin
mdio_tri <= 0;
mdio_out <= 0;
if (!mdio_operation[12]) // Clause 22 Write
state <= WRITE1;
else if (mdio_operation[10]) // Clause 45 Write
state <= WRITE1;
else // Clause 45 ADDRESS
state <= C45_ADDR1;
end
TA3: begin
mdio_tri <= 1;
state <= READ1;
end
//
// Clause 22 Reads and both forms of clause 45 Reads have the same bus transaction from here out.
//
READ1: begin
mdio_tri <= 1;
mdio_read_data[15] <= mdio_in;
state <= READ2;
end
READ2: begin
mdio_tri <= 1;
mdio_read_data[14] <= mdio_in;
state <= READ3;
end
READ3: begin
mdio_tri <= 1;
mdio_read_data[13] <= mdio_in;
state <= READ4;
end
READ4: begin
mdio_tri <= 1;
mdio_read_data[12] <= mdio_in;
state <= READ5;
end
READ5: begin
mdio_tri <= 1;
mdio_read_data[11] <= mdio_in;
state <= READ6;
end
READ6: begin
mdio_tri <= 1;
mdio_read_data[10] <= mdio_in;
state <= READ7;
end
READ7: begin
mdio_tri <= 1;
mdio_read_data[9] <= mdio_in;
state <= READ8;
end
READ8: begin
mdio_tri <= 1;
mdio_read_data[8] <= mdio_in;
state <= READ9;
end
READ9: begin
mdio_tri <= 1;
mdio_read_data[7] <= mdio_in;
state <= READ10;
end
READ10: begin
mdio_tri <= 1;
mdio_read_data[6] <= mdio_in;
state <= READ11;
end
READ11: begin
mdio_tri <= 1;
mdio_read_data[5] <= mdio_in;
state <= READ12;
end
READ12: begin
mdio_tri <= 1;
mdio_read_data[4] <= mdio_in;
state <= READ13;
end
READ13: begin
mdio_tri <= 1;
mdio_read_data[3] <= mdio_in;
state <= READ14;
end
READ14: begin
mdio_tri <= 1;
mdio_read_data[2] <= mdio_in;
state <= READ15;
end
READ15: begin
mdio_tri <= 1;
mdio_read_data[1] <= mdio_in;
state <= READ16;
end
READ16: begin
mdio_tri <= 1;
mdio_read_data[0] <= mdio_in;
state <= PREIDLE;
mdio_done <= 1;
end
//
// Write 16bits of data for all types of Write.
//
WRITE1:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[15];
state <= WRITE2;
end
WRITE2:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[14];
state <= WRITE3;
end
WRITE3:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[13];
state <= WRITE4;
end
WRITE4:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[12];
state <= WRITE5;
end
WRITE5:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[11];
state <= WRITE6;
end
WRITE6:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[10];
state <= WRITE7;
end
WRITE7:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[9];
state <= WRITE8;
end
WRITE8:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[8];
state <= WRITE9;
end
WRITE9:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[7];
state <= WRITE10;
end
WRITE10:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[6];
state <= WRITE11;
end
WRITE11:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[5];
state <= WRITE12;
end
WRITE12:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[4];
state <= WRITE13;
end
WRITE13:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[3];
state <= WRITE14;
end
WRITE14:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[2];
state <= WRITE15;
end
WRITE15:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[1];
state <= WRITE16;
end
WRITE16:begin
mdio_tri <= 0;
mdio_out <= mdio_write_data[0];
state <= PREIDLE;
mdio_done <= 1;
end
//
// Write 16bits of address for a Clause 45 Address transaction
//
C45_ADDR1:begin
mdio_tri <= 0;
mdio_out <= mdio_address[15];
state <= C45_ADDR2;
end
C45_ADDR2:begin
mdio_tri <= 0;
mdio_out <= mdio_address[14];
state <= C45_ADDR3;
end
C45_ADDR3:begin
mdio_tri <= 0;
mdio_out <= mdio_address[13];
state <= C45_ADDR4;
end
C45_ADDR4:begin
mdio_tri <= 0;
mdio_out <= mdio_address[12];
state <= C45_ADDR5;
end
C45_ADDR5:begin
mdio_tri <= 0;
mdio_out <= mdio_address[11];
state <= C45_ADDR6;
end
C45_ADDR6:begin
mdio_tri <= 0;
mdio_out <= mdio_address[10];
state <= C45_ADDR7;
end
C45_ADDR7:begin
mdio_tri <= 0;
mdio_out <= mdio_address[9];
state <= C45_ADDR8;
end
C45_ADDR8:begin
mdio_tri <= 0;
mdio_out <= mdio_address[8];
state <= C45_ADDR9;
end
C45_ADDR9:begin
mdio_tri <= 0;
mdio_out <= mdio_address[7];
state <= C45_ADDR10;
end
C45_ADDR10:begin
mdio_tri <= 0;
mdio_out <= mdio_address[6];
state <= C45_ADDR11;
end
C45_ADDR11:begin
mdio_tri <= 0;
mdio_out <= mdio_address[5];
state <= C45_ADDR12;
end
C45_ADDR12:begin
mdio_tri <= 0;
mdio_out <= mdio_address[4];
state <= C45_ADDR13;
end
C45_ADDR13:begin
mdio_tri <= 0;
mdio_out <= mdio_address[3];
state <= C45_ADDR14;
end
C45_ADDR14:begin
mdio_tri <= 0;
mdio_out <= mdio_address[2];
state <= C45_ADDR15;
end
C45_ADDR15:begin
mdio_tri <= 0;
mdio_out <= mdio_address[1];
state <= C45_ADDR16;
end
C45_ADDR16:begin
mdio_tri <= 0;
mdio_out <= mdio_address[0];
state <= PREIDLE;
mdio_done <= 1;
end
//
// PREIDLE allows the mdio_running bit to reset.
//
PREIDLE: begin
state <= IDLE;
end
endcase // case(state)
end // if (mdc_falling_edge)
endmodule
|