1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
//
// Copyright 2019 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: ctrlport_reg_rw
//
// Description:
//
// Implements a read/write register on a CTRL Port bus. CTRL Port byte
// enables are supported on writes. All input addresses are assumed to be
// 32-bit word aligned.
//
// The width of the register is configurable. The register will take up the
// full power-of-2 address region, with a minimum of a 4-byte region. For
// example:
//
// WIDTH (Bits) │ Address Space (Bytes)
// ──────────────┼───────────────────────
// 1 to 32 │ 4
// 33 to 64 │ 8
// 64 to 128 │ 16
// etc. │ etc.
//
// When COHERENCY is true and the WIDTH is larger than a single CTRL Port
// word (32 bits), writing the least-significant words of the register causes
// them to be saved in a cache register and does not immediately update those
// words in the register. Writing the most-significant word of the register
// causes all the words to be simultaneously written to the register. This
// allows writes of large, multi-word registers to be coherent. This is very
// important for registers in which there is a relationship between the upper
// and lower bits, such as in a counter value in which changing only part of
// the word at a time could be seen as a large change when in fact the final
// change is small. The most-significant word MUST always be written last
// when COHERENCY is true.
//
// Parameters:
//
// ADDR : Byte address to use for this register. This address must be
// aligned to the size of the register.
// WIDTH : Width of register to implement in bits. This determines the
// width of the "value_out" input and the amount of address space
// used by the register, which is always a power of 2.
// COHERENT : Setting to 1 implements additional logic so that register
// writes maintain coherency. Setting to 0 removes this logic, so
// that each 32-bit word of the register is treated independently.
// RESET_VAL : Value to give the register at power-on and at reset.
//
// Ports:
//
// *ctrlport* : CTRL Port interface.
// value_out : The current value of the register.
// written : A strobe (single-cycle pulse) that indicates when the
// register was written. The new value may or may not be the
// same as the old value.
//
module ctrlport_reg_rw #(
parameter [ 19:0] ADDR = 0,
parameter WIDTH = 32,
parameter COHERENT = 0,
parameter [WIDTH-1:0] RESET_VAL = 'h0
) (
input wire ctrlport_clk,
input wire ctrlport_rst,
input wire s_ctrlport_req_wr,
input wire s_ctrlport_req_rd,
input wire [19:0] s_ctrlport_req_addr,
input wire [31:0] s_ctrlport_req_data,
input wire [ 3:0] s_ctrlport_req_byte_en,
output wire s_ctrlport_resp_ack,
output wire [ 1:0] s_ctrlport_resp_status,
output reg [31:0] s_ctrlport_resp_data,
output wire [WIDTH-1:0] value_out,
output reg written
);
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
function automatic integer max(input integer a, b);
max = a > b ? a : b;
endfunction
//---------------------------------------------------------------------------
// Local Parameters
//---------------------------------------------------------------------------
// Calculate the number of bytes of address space this register will take up.
// The minimum size is a 32-bit register (4 bytes).
localparam NUM_BYTES = max(4, 2**$clog2(WIDTH)/8);
// Calculate the number of bits needed to index each byte of this register.
localparam BYTE_ADDR_W = $clog2(NUM_BYTES);
// Calculate the number of bits needed to index each 32-bit word of this
// register.
localparam WORD_ADDR_W = BYTE_ADDR_W-2;
//---------------------------------------------------------------------------
// Parameter Checking
//---------------------------------------------------------------------------
// Make sure WIDTH is valid
if (WIDTH < 1) begin
WIDTH_must_be_at_least_1();
end
// Make sure the address is word-aligned to the size of the register
if (ADDR[BYTE_ADDR_W-1:0] != 0) begin
ADDR_must_be_aligned_to_the_size_of_the_register();
end
//---------------------------------------------------------------------------
// Write Logic
//---------------------------------------------------------------------------
// Use full size to simplify indexing. Unused bits will be optimized away.
reg [8*NUM_BYTES-1:0] reg_val = 0;
reg [8*NUM_BYTES-1:0] write_cache_reg;
reg [ NUM_BYTES-1:0] write_en_cache_reg;
reg s_ctrlport_resp_ack_wr;
integer b, w;
//
// Coherent implementation
//
if (WIDTH > 32 && COHERENT) begin : gen_coherent
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
reg_val <= RESET_VAL;
written <= 1'b0;
end else begin
// Check if any part of this register is being written to
if (s_ctrlport_req_addr[19 : BYTE_ADDR_W] == ADDR[19 : BYTE_ADDR_W] && s_ctrlport_req_wr) begin
s_ctrlport_resp_ack_wr <= 1'b1;
// Check if we're writing the most-significant word
if (s_ctrlport_req_addr[BYTE_ADDR_W-1 : 2] == {BYTE_ADDR_W-2{1'b1}}) begin
written <= 1'b1;
// Iterate over the 4 bytes, updating each based on byte_en
for (b = 0; b < 4; b = b+1) begin
// Update the most-significant word from the input
if(s_ctrlport_req_byte_en[b]) begin
reg_val[32*(NUM_BYTES/4-1)+b*8 +: 8] <= s_ctrlport_req_data[8*b +: 8];
end
// Update the least-significant words from the cache
for (w = 0; w < NUM_BYTES/4; w = w+1) begin
if (write_en_cache_reg[b]) begin
reg_val[32*w+b*8 +: 8] <= write_cache_reg[32*w+b*8 +: 8];
end
end
end
// We're writing one of the least-significant words, so just cache
// the values written.
end else begin
w = s_ctrlport_req_addr[2 +: WORD_ADDR_W];
write_cache_reg[w*32 +: 32] <= s_ctrlport_req_data;
write_en_cache_reg[w*4 +: 4] <= s_ctrlport_req_byte_en;
end
end else begin
s_ctrlport_resp_ack_wr <= 1'b0;
written <= 1'b0;
end
end
end
//
// Non-coherent implementation
//
end else begin : gen_no_coherent
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
reg_val <= RESET_VAL;
written <= 1'b0;
end else begin
// Check if any part of the word is begin written to
if (s_ctrlport_req_addr[19 : BYTE_ADDR_W] == ADDR[19 : BYTE_ADDR_W] && s_ctrlport_req_wr) begin
for (b = 0; b < 4; b = b + 1) begin
if (s_ctrlport_req_byte_en[b]) begin
if (WORD_ADDR_W > 0) begin
// Update only the word of the register being addressed. "max"
// is needed by Vivado here to elaborate when WORD_ADDR_W is 0.
w = s_ctrlport_req_addr[2 +: max(1, WORD_ADDR_W)];
reg_val[w*32+b*8 +: 8] <= s_ctrlport_req_data[8*b +: 8];
end else begin
reg_val[b*8 +: 8] <= s_ctrlport_req_data[8*b +: 8];
end
end
end
s_ctrlport_resp_ack_wr <= 1'b1;
written <= 1'b1;
end else begin
s_ctrlport_resp_ack_wr <= 1'b0;
written <= 1'b0;
end
end
end
end
//---------------------------------------------------------------------------
// Read Logic
//---------------------------------------------------------------------------
reg s_ctrlport_resp_ack_rd;
assign s_ctrlport_resp_status = 0; // Status is always "OK" (0)
assign value_out = reg_val[WIDTH-1:0];
// Because the register is only changed by software, read coherency is not
// required, so we just return the word that's being addressed.
always @(posedge ctrlport_clk) begin
// Check if any part of this register is being addressed
if (s_ctrlport_req_addr[19 : BYTE_ADDR_W] == ADDR[19 : BYTE_ADDR_W] && s_ctrlport_req_rd) begin
s_ctrlport_resp_ack_rd <= 1'b1;
if (WORD_ADDR_W > 0) begin
// Read back only the word of the register being addressed
s_ctrlport_resp_data <= reg_val[s_ctrlport_req_addr[2 +: WORD_ADDR_W]*32 +: 32];
end else begin
s_ctrlport_resp_data <= reg_val[31:0];
end
end else begin
s_ctrlport_resp_ack_rd <= 1'b0;
end
end
// Combine read/write ack
assign s_ctrlport_resp_ack = s_ctrlport_resp_ack_wr | s_ctrlport_resp_ack_rd;
endmodule
|