1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
//
// Copyright 2019 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: ctrlport_decoder
//
// Description:
//
// This block splits a single control port interface into multiple. It is used
// when you have a single master that needs to access multiple slaves. For
// example, a NoC block where the registers are implemented in multiple
// submodules that must be read/written by a single NoC shell.
//
// This version also implements address decoding. The request is passed to a
// slave only if the address falls within that slave's address space. Each
// slave is given an address space of 2**ADDR_W and the first slave starts at
// address BASE_ADDR. In other words, the request address is partitioned as
// shown below.
//
// |---------------- 32-bit -----------------|
// | Base | Port Num | Slave Addr |
// |-----------------------------------------|
//
// When passed to the slave, the base address and port number bits are stripped
// from the request address and only the SLAVE_ADDR_W-bit address is passed
// through.
//
// Parameters:
//
// NUM_SLAVES : Number of slave devices that you want to connect to master.
// BASE_ADDR : Base address for slave 0. This should be a power-of-2
// multiple of the combined slave address spaces.
// SLAVE_ADDR_W : Number of address bits to allocate to each slave.
//
module ctrlport_decoder #(
parameter NUM_SLAVES = 2,
parameter BASE_ADDR = 0,
parameter SLAVE_ADDR_W = 8
) (
input wire ctrlport_clk,
input wire ctrlport_rst,
// Slave Interface
input wire s_ctrlport_req_wr,
input wire s_ctrlport_req_rd,
input wire [19:0] s_ctrlport_req_addr,
input wire [31:0] s_ctrlport_req_data,
input wire [ 3:0] s_ctrlport_req_byte_en,
input wire s_ctrlport_req_has_time,
input wire [63:0] s_ctrlport_req_time,
output reg s_ctrlport_resp_ack = 1'b0,
output reg [ 1:0] s_ctrlport_resp_status,
output reg [31:0] s_ctrlport_resp_data,
// Master Interfaces
output reg [ NUM_SLAVES-1:0] m_ctrlport_req_wr = 0,
output reg [ NUM_SLAVES-1:0] m_ctrlport_req_rd = 0,
output reg [20*NUM_SLAVES-1:0] m_ctrlport_req_addr = 0,
output reg [32*NUM_SLAVES-1:0] m_ctrlport_req_data,
output reg [ 4*NUM_SLAVES-1:0] m_ctrlport_req_byte_en,
output reg [ NUM_SLAVES-1:0] m_ctrlport_req_has_time,
output reg [64*NUM_SLAVES-1:0] m_ctrlport_req_time,
input wire [ NUM_SLAVES-1:0] m_ctrlport_resp_ack,
input wire [ 2*NUM_SLAVES-1:0] m_ctrlport_resp_status,
input wire [32*NUM_SLAVES-1:0] m_ctrlport_resp_data
);
localparam PORT_NUM_W = $clog2(NUM_SLAVES);
localparam PORT_NUM_POS = SLAVE_ADDR_W;
localparam BASE_ADDR_W = 20 - (SLAVE_ADDR_W + PORT_NUM_W);
localparam BASE_ADDR_POS = SLAVE_ADDR_W + PORT_NUM_W;
localparam [19:0] BASE_ADDR_MASK = { BASE_ADDR_W {1'b1}} << BASE_ADDR_POS;
//---------------------------------------------------------------------------
// Split the requests among the slaves
//---------------------------------------------------------------------------
wire [NUM_SLAVES-1:0] decoder;
genvar i;
for (i = 0; i < NUM_SLAVES; i = i+1) begin : gen_split
// Check if the upper bits of the request address match each slave. If the
// address matches, set the corresponding decoder[] bit.
if (PORT_NUM_W == 0) begin
// Only one port in this case, so there are no port number bits to check
assign decoder[i] = ((s_ctrlport_req_addr & BASE_ADDR_MASK) == BASE_ADDR);
end else begin
assign decoder[i] = ((s_ctrlport_req_addr & BASE_ADDR_MASK) == BASE_ADDR) &&
(s_ctrlport_req_addr[PORT_NUM_POS +: PORT_NUM_W] == i);
end
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
m_ctrlport_req_wr[i] <= 1'b0;
m_ctrlport_req_rd[i] <= 1'b0;
end else begin
// Mask WR and RD based on address decoding
m_ctrlport_req_wr[i] <= s_ctrlport_req_wr & decoder[i];
m_ctrlport_req_rd[i] <= s_ctrlport_req_rd & decoder[i];
// Other values pass through to all slaves, but should be ignored
// unless the corresponding WR or RD is not asserted.
m_ctrlport_req_data [32*i +: 32] <= s_ctrlport_req_data;
m_ctrlport_req_byte_en [4*i +: 4] <= s_ctrlport_req_byte_en;
m_ctrlport_req_has_time[i] <= s_ctrlport_req_has_time;
m_ctrlport_req_time [64*i +: 64] <= s_ctrlport_req_time;
// Pass through only the relevant slave bits
m_ctrlport_req_addr[20*i+:20] <= 20'b0;
m_ctrlport_req_addr[20*i+:SLAVE_ADDR_W] <= s_ctrlport_req_addr[SLAVE_ADDR_W-1:0];
end
end
end
//---------------------------------------------------------------------------
// Decode the responses
//---------------------------------------------------------------------------
reg [31:0] data;
reg [ 1:0] status;
reg ack = 0;
// Take the responses and mask them with ack, then OR them together
always @(*) begin : comb_decode
integer s;
data = 0;
status = 0;
ack = 0;
for (s = 0; s < NUM_SLAVES; s = s+1) begin
data = data | (m_ctrlport_resp_data [s*32 +: 32] & {32{m_ctrlport_resp_ack[s]}});
status = status | (m_ctrlport_resp_status[s* 2 +: 2] & { 2{m_ctrlport_resp_ack[s]}});
ack = ack | m_ctrlport_resp_ack[s];
end
end
// Register the output to break combinatorial path
always @(posedge ctrlport_clk) begin
if (ctrlport_rst) begin
s_ctrlport_resp_ack <= 0;
end else begin
s_ctrlport_resp_data <= data;
s_ctrlport_resp_status <= status;
s_ctrlport_resp_ack <= ack;
end
end
endmodule
|