1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
/*
* f15_histo_mem.v
*
* Histogram State storage. Basically a memory with 2 R/W ports where
* each port can do read & write at different address at the same time
* if those address are inteleaved (like read at odd address when writing
* to even address).
*
* This allows two independent process to do READ/MODIFY/WRITE.
*
* Copyright (C) 2014 Ettus Corporation LLC
* Copyright 2018 Ettus Research, a National Instruments Company
*
* SPDX-License-Identifier: LGPL-3.0-or-later
*
* vim: ts=4 sw=4
*/
`ifdef SIM
`default_nettype none
`endif
module f15_histo_mem #(
parameter integer ADDR_WIDTH = 16
)(
// Port A Read
input wire [ADDR_WIDTH-1:0] addr_AR,
output reg [8:0] data_AR,
input wire ena_AR,
// Port A Write
input wire [ADDR_WIDTH-1:0] addr_AW,
input wire [8:0] data_AW,
input wire ena_AW,
// Port B Read
input wire [ADDR_WIDTH-1:0] addr_BR,
output reg [8:0] data_BR,
input wire ena_BR,
// Port B Write
input wire [ADDR_WIDTH-1:0] addr_BW,
input wire [8:0] data_BW,
input wire ena_BW,
// Error detection
output reg conflict_A,
output reg conflict_B,
// Common
input wire clk,
input wire rst
);
// Signals
// Memory banks IF
wire [ADDR_WIDTH-2:0] even_addra, odd_addra;
wire [ADDR_WIDTH-2:0] even_addrb, odd_addrb;
wire [8:0] even_dia, odd_dia;
wire [8:0] even_dib, odd_dib;
wire [8:0] even_doa, odd_doa;
wire [8:0] even_dob, odd_dob;
wire even_wea, odd_wea;
wire even_web, odd_web;
wire even_rea, odd_rea;
wire even_reb, odd_reb;
// Control
wire sel_A, sel_B;
// Mux selection
assign sel_A = ena_AR ? addr_AR[0] : ~addr_AW[0];
assign sel_B = ena_BR ? addr_BR[0] : ~addr_BW[0];
// Conflict detection
always @(posedge clk)
begin
conflict_A <= !(addr_AR[0] ^ addr_AW[0]) & ena_AR & ena_AW;
conflict_B <= !(addr_BR[0] ^ addr_BW[0]) & ena_BR & ena_BW;
end
// Control signals
assign even_wea = sel_A & ena_AW;
assign odd_wea = !sel_A & ena_AW;
assign even_web = sel_B & ena_BW;
assign odd_web = !sel_B & ena_BW;
assign even_rea = !sel_A & ena_AR;
assign odd_rea = sel_A & ena_AR;
assign even_reb = !sel_B & ena_BR;
assign odd_reb = sel_B & ena_BR;
// Address path mapping
assign even_addra = sel_A ? addr_AW[ADDR_WIDTH-1:1] : addr_AR[ADDR_WIDTH-1:1];
assign even_addrb = sel_B ? addr_BW[ADDR_WIDTH-1:1] : addr_BR[ADDR_WIDTH-1:1];
assign odd_addra = sel_A ? addr_AR[ADDR_WIDTH-1:1] : addr_AW[ADDR_WIDTH-1:1];
assign odd_addrb = sel_B ? addr_BR[ADDR_WIDTH-1:1] : addr_BW[ADDR_WIDTH-1:1];
// Data path mapping
assign even_dia = data_AW;
assign odd_dia = data_AW;
assign even_dib = data_BW;
assign odd_dib = data_BW;
always @(posedge clk)
begin
data_AR <= even_doa | odd_doa;
data_BR <= even_dob | odd_dob;
end
// Instanciate memory banks
f15_histo_mem_bank #(
.ADDR_WIDTH(ADDR_WIDTH-1)
) mem_even (
.addra(even_addra),
.addrb(even_addrb),
.dia(even_dia),
.dib(even_dib),
.doa(even_doa),
.dob(even_dob),
.wea(even_wea),
.web(even_web),
.rea(even_rea),
.reb(even_reb),
.clk(clk),
.rst(rst)
);
f15_histo_mem_bank #(
.ADDR_WIDTH(ADDR_WIDTH-1)
) mem_odd (
.addra(odd_addra),
.addrb(odd_addrb),
.dia(odd_dia),
.dib(odd_dib),
.doa(odd_doa),
.dob(odd_dob),
.wea(odd_wea),
.web(odd_web),
.rea(odd_rea),
.reb(odd_reb),
.clk(clk),
.rst(rst)
);
endmodule // f15_histo_mem
module f15_histo_mem_bank #(
parameter integer ADDR_WIDTH = 15
)(
input wire [ADDR_WIDTH-1:0] addra,
input wire [ADDR_WIDTH-1:0] addrb,
input wire [8:0] dia,
input wire [8:0] dib,
output reg [8:0] doa,
output reg [8:0] dob,
input wire wea,
input wire web,
input wire rea,
input wire reb,
input wire clk,
input wire rst
);
localparam integer N_BRAMS = 1 << (ADDR_WIDTH - 12);
genvar i;
integer j;
// Signals
// Direct RAM connections
wire [15:0] ramb_addra;
wire [15:0] ramb_addrb;
wire [31:0] ramb_dia;
wire [31:0] ramb_dib;
wire [ 3:0] ramb_dipa;
wire [ 3:0] ramb_dipb;
wire [31:0] ramb_doa[0:N_BRAMS-1];
wire [31:0] ramb_dob[0:N_BRAMS-1];
wire [ 3:0] ramb_dopa[0:N_BRAMS-1];
wire [ 3:0] ramb_dopb[0:N_BRAMS-1];
wire ramb_wea[0:N_BRAMS-1];
wire ramb_web[0:N_BRAMS-1];
reg ramb_rstdoa[0:N_BRAMS-1];
reg ramb_rstdob[0:N_BRAMS-1];
// Control
reg onehota[0:N_BRAMS-1];
reg onehotb[0:N_BRAMS-1];
// Map address LSB and data inputs
assign ramb_addra = { 1'b0, addra[11:0], 3'b000 };
assign ramb_addrb = { 1'b0, addrb[11:0], 3'b000 };
assign ramb_dia = { 16'h0000, dia[8:1] };
assign ramb_dib = { 16'h0000, dib[8:1] };
assign ramb_dipa = { 3'b000, dia[0] };
assign ramb_dipb = { 3'b000, dib[0] };
// OR all the RAMB outputs
always @*
begin
doa = 9'h0;
dob = 9'h0;
for (j=0; j<N_BRAMS; j=j+1) begin
doa = doa | { ramb_doa[j][7:0], ramb_dopa[j][0] };
dob = dob | { ramb_dob[j][7:0], ramb_dopb[j][0] };
end
end
// Generate array
generate
for (i=0; i<N_BRAMS; i=i+1) begin
// Decode address MSB to one-hot signal
always @(addra,addrb)
begin
onehota[i] <= (addra[ADDR_WIDTH-1:12] == i) ? 1'b1 : 1'b0;
onehotb[i] <= (addrb[ADDR_WIDTH-1:12] == i) ? 1'b1 : 1'b0;
end
// If no read, then reset the output reg to zero
always @(posedge clk)
begin
ramb_rstdoa[i] <= !(onehota[i] & rea);
ramb_rstdob[i] <= !(onehotb[i] & reb);
end
// Mask the write enable with decoded address
assign ramb_wea[i] = onehota[i] & wea;
assign ramb_web[i] = onehotb[i] & web;
// Instantiate RAM Block
RAMB36E1 #(
.RDADDR_COLLISION_HWCONFIG("PERFORMANCE"),
.SIM_COLLISION_CHECK("NONE"),
.DOA_REG(1),
.DOB_REG(1),
.EN_ECC_READ("FALSE"),
.EN_ECC_WRITE("FALSE"),
.RAM_EXTENSION_A("NONE"),
.RAM_EXTENSION_B("NONE"),
.RAM_MODE("TDP"),
.READ_WIDTH_A(9),
.READ_WIDTH_B(9),
.WRITE_WIDTH_A(9),
.WRITE_WIDTH_B(9),
.RSTREG_PRIORITY_A("RSTREG"),
.RSTREG_PRIORITY_B("RSTREG"),
.SIM_DEVICE("7SERIES"),
.SRVAL_A(36'h000000000),
.SRVAL_B(36'h000000000),
.WRITE_MODE_A("READ_FIRST"),
.WRITE_MODE_B("READ_FIRST")
)
mem_elem_I (
.DOADO(ramb_doa[i]),
.DOPADOP(ramb_dopa[i]),
.DOBDO(ramb_dob[i]),
.DOPBDOP(ramb_dopb[i]),
.CASCADEINA(1'b0),
.CASCADEINB(1'b0),
.INJECTDBITERR(1'b0),
.INJECTSBITERR(1'b0),
.ADDRARDADDR(ramb_addra),
.CLKARDCLK(clk),
.ENARDEN(1'b1),
.REGCEAREGCE(1'b1),
.RSTRAMARSTRAM(rst),
.RSTREGARSTREG(ramb_rstdoa[i]),
.WEA({3'b0, ramb_wea[i]}),
.DIADI(ramb_dia),
.DIPADIP(ramb_dipa),
.ADDRBWRADDR(ramb_addrb),
.CLKBWRCLK(clk),
.ENBWREN(1'b1),
.REGCEB(1'b1),
.RSTRAMB(rst),
.RSTREGB(ramb_rstdob[i]),
.WEBWE({7'b0, ramb_web[i]}),
.DIBDI(ramb_dib),
.DIPBDIP(ramb_dipb)
);
end
endgenerate
endmodule // f15_histo_mem_bank
|