aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/lib/rfnoc/fosphor/f15_histo_mem.v
blob: 7a7f7e279db7aa8d7907c1b41a29ff5adf2e594e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
 * f15_histo_mem.v
 *
 * Histogram State storage. Basically a memory with 2 R/W ports where
 * each port can do read & write at different address at the same time
 * if those address are inteleaved (like read at odd address when writing
 * to even address).
 *
 * This allows two independent process to do READ/MODIFY/WRITE.
 *
 * Copyright (C) 2014  Ettus Corporation LLC
 * Copyright 2018 Ettus Research, a National Instruments Company
 *
 * SPDX-License-Identifier: LGPL-3.0-or-later
 *
 * vim: ts=4 sw=4
 */

`ifdef SIM
`default_nettype none
`endif

module f15_histo_mem #(
	parameter integer ADDR_WIDTH = 16
)(
	// Port A Read
	input  wire [ADDR_WIDTH-1:0] addr_AR,
	output reg  [8:0] data_AR,
	input  wire ena_AR,

	// Port A Write
	input  wire [ADDR_WIDTH-1:0] addr_AW,
	input  wire [8:0] data_AW,
	input  wire ena_AW,

	// Port B Read
	input  wire [ADDR_WIDTH-1:0] addr_BR,
	output reg  [8:0] data_BR,
	input  wire ena_BR,

	// Port B Write
	input  wire [ADDR_WIDTH-1:0] addr_BW,
	input  wire [8:0] data_BW,
	input  wire ena_BW,

	// Error detection
	output reg  conflict_A,
	output reg  conflict_B,

	// Common
	input  wire clk,
	input  wire rst
);

	// Signals
		// Memory banks IF
	wire [ADDR_WIDTH-2:0] even_addra, odd_addra;
	wire [ADDR_WIDTH-2:0] even_addrb, odd_addrb;
	wire [8:0] even_dia, odd_dia;
	wire [8:0] even_dib, odd_dib;
	wire [8:0] even_doa, odd_doa;
	wire [8:0] even_dob, odd_dob;
	wire even_wea, odd_wea;
	wire even_web, odd_web;
	wire even_rea, odd_rea;
	wire even_reb, odd_reb;

		// Control
	wire sel_A, sel_B;


	// Mux selection
	assign sel_A = ena_AR ? addr_AR[0] : ~addr_AW[0];
	assign sel_B = ena_BR ? addr_BR[0] : ~addr_BW[0];

	// Conflict detection
	always @(posedge clk)
	begin
		conflict_A <= !(addr_AR[0] ^ addr_AW[0]) & ena_AR & ena_AW;
		conflict_B <= !(addr_BR[0] ^ addr_BW[0]) & ena_BR & ena_BW;
	end

	// Control signals
	assign even_wea =  sel_A & ena_AW;
	assign odd_wea  = !sel_A & ena_AW;
	assign even_web =  sel_B & ena_BW;
	assign odd_web  = !sel_B & ena_BW;
	assign even_rea = !sel_A & ena_AR;
	assign odd_rea  =  sel_A & ena_AR;
	assign even_reb = !sel_B & ena_BR;
	assign odd_reb  =  sel_B & ena_BR;

	// Address path mapping
	assign even_addra = sel_A ? addr_AW[ADDR_WIDTH-1:1] : addr_AR[ADDR_WIDTH-1:1];
	assign even_addrb = sel_B ? addr_BW[ADDR_WIDTH-1:1] : addr_BR[ADDR_WIDTH-1:1];
	assign odd_addra  = sel_A ? addr_AR[ADDR_WIDTH-1:1] : addr_AW[ADDR_WIDTH-1:1];
	assign odd_addrb  = sel_B ? addr_BR[ADDR_WIDTH-1:1] : addr_BW[ADDR_WIDTH-1:1];

	// Data path mapping
	assign even_dia = data_AW;
	assign odd_dia  = data_AW;
	assign even_dib = data_BW;
	assign odd_dib  = data_BW;

	always @(posedge clk)
	begin
		data_AR <= even_doa | odd_doa;
		data_BR <= even_dob | odd_dob;
	end

	// Instanciate memory banks
	f15_histo_mem_bank #(
		.ADDR_WIDTH(ADDR_WIDTH-1)
	) mem_even (
		.addra(even_addra),
		.addrb(even_addrb),
		.dia(even_dia),
		.dib(even_dib),
		.doa(even_doa),
		.dob(even_dob),
		.wea(even_wea),
		.web(even_web),
		.rea(even_rea),
		.reb(even_reb),
		.clk(clk),
		.rst(rst)
	);

	f15_histo_mem_bank #(
		.ADDR_WIDTH(ADDR_WIDTH-1)
	) mem_odd (
		.addra(odd_addra),
		.addrb(odd_addrb),
		.dia(odd_dia),
		.dib(odd_dib),
		.doa(odd_doa),
		.dob(odd_dob),
		.wea(odd_wea),
		.web(odd_web),
		.rea(odd_rea),
		.reb(odd_reb),
		.clk(clk),
		.rst(rst)
	);

endmodule // f15_histo_mem


module f15_histo_mem_bank #(
	parameter integer ADDR_WIDTH = 15
)(
	input  wire [ADDR_WIDTH-1:0] addra,
	input  wire [ADDR_WIDTH-1:0] addrb,
	input  wire [8:0] dia,
	input  wire [8:0] dib,
	output reg  [8:0] doa,
	output reg  [8:0] dob,
	input  wire wea,
	input  wire web,
	input  wire rea,
	input  wire reb,
	input  wire clk,
	input  wire rst
);
	localparam integer N_BRAMS = 1 << (ADDR_WIDTH - 12);
	genvar i;
	integer j;

	// Signals
		// Direct RAM connections
	wire [15:0] ramb_addra;
	wire [15:0] ramb_addrb;
	wire [31:0] ramb_dia;
	wire [31:0] ramb_dib;
	wire [ 3:0] ramb_dipa;
	wire [ 3:0] ramb_dipb;
	wire [31:0] ramb_doa[0:N_BRAMS-1];
	wire [31:0] ramb_dob[0:N_BRAMS-1];
	wire [ 3:0] ramb_dopa[0:N_BRAMS-1];
	wire [ 3:0] ramb_dopb[0:N_BRAMS-1];
	wire        ramb_wea[0:N_BRAMS-1];
	wire        ramb_web[0:N_BRAMS-1];
	reg         ramb_rstdoa[0:N_BRAMS-1];
	reg         ramb_rstdob[0:N_BRAMS-1];

		// Control
	reg onehota[0:N_BRAMS-1];
	reg onehotb[0:N_BRAMS-1];

	// Map address LSB and data inputs
	assign ramb_addra = { 1'b0, addra[11:0], 3'b000 };
	assign ramb_addrb = { 1'b0, addrb[11:0], 3'b000 };

	assign ramb_dia   = { 16'h0000, dia[8:1] };
	assign ramb_dib   = { 16'h0000, dib[8:1] };
	assign ramb_dipa  = {  3'b000,  dia[0] };
	assign ramb_dipb  = {  3'b000,  dib[0] };

	// OR all the RAMB outputs
	always @*
	begin
		doa = 9'h0;
		dob = 9'h0;
		for (j=0; j<N_BRAMS; j=j+1) begin
			doa = doa | { ramb_doa[j][7:0], ramb_dopa[j][0] };
			dob = dob | { ramb_dob[j][7:0], ramb_dopb[j][0] };
		end
	end

	// Generate array
	generate
		for (i=0; i<N_BRAMS; i=i+1) begin

			// Decode address MSB to one-hot signal
			always @(addra,addrb)
			begin
				onehota[i] <= (addra[ADDR_WIDTH-1:12] == i) ? 1'b1 : 1'b0;
				onehotb[i] <= (addrb[ADDR_WIDTH-1:12] == i) ? 1'b1 : 1'b0;
			end

			// If no read, then reset the output reg to zero
			always @(posedge clk)
			begin
				ramb_rstdoa[i] <= !(onehota[i] & rea);
				ramb_rstdob[i] <= !(onehotb[i] & reb);
			end

			// Mask the write enable with decoded address
			assign ramb_wea[i] = onehota[i] & wea;
			assign ramb_web[i] = onehotb[i] & web;

			// Instantiate RAM Block
			RAMB36E1 #(
				.RDADDR_COLLISION_HWCONFIG("PERFORMANCE"),
				.SIM_COLLISION_CHECK("NONE"),
				.DOA_REG(1),
				.DOB_REG(1),
				.EN_ECC_READ("FALSE"),
				.EN_ECC_WRITE("FALSE"),
				.RAM_EXTENSION_A("NONE"),
				.RAM_EXTENSION_B("NONE"),
				.RAM_MODE("TDP"),
				.READ_WIDTH_A(9),
				.READ_WIDTH_B(9),
				.WRITE_WIDTH_A(9),
				.WRITE_WIDTH_B(9),
				.RSTREG_PRIORITY_A("RSTREG"),
				.RSTREG_PRIORITY_B("RSTREG"),
				.SIM_DEVICE("7SERIES"),
				.SRVAL_A(36'h000000000),
				.SRVAL_B(36'h000000000),
				.WRITE_MODE_A("READ_FIRST"),
				.WRITE_MODE_B("READ_FIRST")
			)
			mem_elem_I (
				.DOADO(ramb_doa[i]),
				.DOPADOP(ramb_dopa[i]),
				.DOBDO(ramb_dob[i]),
				.DOPBDOP(ramb_dopb[i]),
				.CASCADEINA(1'b0),
				.CASCADEINB(1'b0),
				.INJECTDBITERR(1'b0),
				.INJECTSBITERR(1'b0),
				.ADDRARDADDR(ramb_addra),
				.CLKARDCLK(clk),
				.ENARDEN(1'b1),
				.REGCEAREGCE(1'b1),
				.RSTRAMARSTRAM(rst),
				.RSTREGARSTREG(ramb_rstdoa[i]),
				.WEA({3'b0, ramb_wea[i]}),
				.DIADI(ramb_dia),
				.DIPADIP(ramb_dipa),
				.ADDRBWRADDR(ramb_addrb),
				.CLKBWRCLK(clk),
				.ENBWREN(1'b1),
				.REGCEB(1'b1),
				.RSTRAMB(rst),
				.RSTREGB(ramb_rstdob[i]),
				.WEBWE({7'b0, ramb_web[i]}),
				.DIBDI(ramb_dib),
				.DIPBDIP(ramb_dipb)
			);

		end
	endgenerate

endmodule // f15_histo_mem_bank