1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//! RFNoC specific digital up-conversion chain
// High level block diagram:
//
// HB1 -> HB2 -> CIC -> DDS/multiplier -> Scaler
// We don't care about framing here, hence no tlast
module duc #(
parameter SR_PHASE_INC_ADDR = 0,
parameter SR_SCALE_ADDR = 1,
parameter SR_INTERP_ADDR = 2,
parameter NUM_HB = 2,
parameter CIC_MAX_INTERP = 128
)(
input clk, input reset, input clear,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
input [31:0] i_tdata, input [127:0] i_tuser, input i_tvalid, output i_tready,
output [31:0] o_tdata, output [127:0] o_tuser, output o_tvalid, input o_tready
);
localparam RESET_DELAY = 3;
localparam WIDTH = 16; // Input/output bitwidth of the module
localparam CWIDTH = 24; // Internal bitwidth needed for CORDIC accuracy
localparam PWIDTH = 32; // Phase accumulator bitwidth
reg [1:0] hb_rate; // Current Halfband rate
reg [7:0] cic_interp_rate; // Current CIC rate
wire [1:0] hb_rate_int;
wire [7:0] cic_interp_rate_int;
wire [2*CWIDTH-1:0] o_tdata_halfbands; // Halfband output
wire o_tvalid_halfbands;
wire rate_changed; // Rate changed by the settings registers
wire reset_on_change; // Reset the halfbands and the cic everytime there is a rate change
wire reset_on_live_change; // Reset when rate changes while streaming
wire [PWIDTH-1:0] o_tdata_phase;
wire o_tvalid_phase;
wire o_tlast_phase;
wire i_tready_phase;
wire [17:0] scale_factor;
/**************************************************************************
* Settings registers
**************************************************************************/
// AXI settings bus for phase values
axi_setting_reg #(
.ADDR(SR_PHASE_INC_ADDR), .AWIDTH(8), .WIDTH(PWIDTH), .STROBE_LAST(1), .REPEATS(1))
axi_sr_phase (
.clk(clk), .reset(reset),
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.o_tdata(o_tdata_phase), .o_tlast(o_tlast_phase), .o_tvalid(o_tvalid_phase), .o_tready(i_tready_phase));
// AXI settings bus for scale
setting_reg #(.my_addr(SR_SCALE_ADDR), .width(18)) sr_scale (
.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(scale_factor),.changed());
// AXI settings bus for interpolation rate
setting_reg #(.my_addr(SR_INTERP_ADDR), .width(10), .at_reset(1)) sr_interp
(.clk(clk),.rst(reset),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({hb_rate_int,cic_interp_rate_int}),.changed(rate_changed));
// Changing interpolation rates while processing only when axi_rate_change sends a clear
reg active, rate_changed_hold;
reg [RESET_DELAY-1:0] shift_reset;
always @(posedge clk) begin
if (reset) begin
active <= 1'b0;
rate_changed_hold <= 1'b0;
cic_interp_rate <= 'd1;
hb_rate <= 'd0;
shift_reset <= 'd0;
end else begin
if (clear | reset_on_change) begin
active <= 1'b0;
end else if (i_tready & i_tvalid) begin
active <= 1'b1;
end
if (rate_changed & active) begin
rate_changed_hold <= 1'b1;
end
if ((clear | ~active) & (rate_changed | rate_changed_hold)) begin
rate_changed_hold <= 1'b0;
cic_interp_rate <= cic_interp_rate_int;
hb_rate <= hb_rate_int;
shift_reset <= {shift_reset[RESET_DELAY-1:0], 1'b1};
end else begin
shift_reset <= {shift_reset[RESET_DELAY-1:0], 1'b0};
end
end
end
// Long reset for the halfbands
assign reset_on_change = |shift_reset;
assign reset_on_live_change = (clear | reset_on_change | (~active & rate_changed));
/**************************************************************************
* Halfbands
*************************************************************************/
// Sign extend from 16 to 24 bits to increase the accuracy from the frequency shifter
wire [2*CWIDTH-1:0] o_tdata_extd;
sign_extend #(.bits_in(WIDTH), .bits_out(CWIDTH)) sign_extend_in_i (
.in(i_tdata[2*WIDTH-1:WIDTH]), .out(o_tdata_extd[2*CWIDTH-1:CWIDTH]));
sign_extend #(.bits_in(WIDTH), .bits_out(CWIDTH)) sign_extend_in_q (
.in(i_tdata[WIDTH-1:0]), .out(o_tdata_extd[CWIDTH-1:0]));
// Halfband 1 wires
wire i_tready_hb1;
wire [2*CWIDTH-1:0] o_tdata_hb1;
wire o_tvalid_hb1, o_tready_hb1;
// Halfband 2 wires
wire i_tready_hb2;
wire [2*CWIDTH-1:0] o_tdata_hb2;
wire o_tvalid_hb2, o_tready_hb2;
// Halfband 3 wires
wire i_tready_hb3;
wire [2*CWIDTH-1:0] o_tdata_hb3;
wire o_tvalid_hb3, o_tready_hb3;
generate
if( NUM_HB > 0 ) begin
axi_hb47 halfband1 (
.aclk(clk),
.aresetn(~(reset | clear | reset_on_change)),
.s_axis_data_tvalid(i_tvalid),
.s_axis_data_tready(i_tready_hb1),
.s_axis_data_tdata(o_tdata_extd),
.m_axis_data_tvalid(o_tvalid_hb1),
.m_axis_data_tready(o_tready_hb1),
.m_axis_data_tdata(o_tdata_hb1)
);
end else begin
assign o_tdata_hb1 = 'h0;
assign o_tvalid_hb1 = 1'h0;
assign i_tready_hb1 = 1'b0;
end
if( NUM_HB > 1 ) begin
axi_hb47 halfband2 (
.aclk(clk),
.aresetn(~(reset | clear | reset_on_change)),
.s_axis_data_tvalid(o_tvalid_hb1),
.s_axis_data_tready(i_tready_hb2),
.s_axis_data_tdata({o_tdata_hb1[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb1[CWIDTH-1:0] << 2}),
.m_axis_data_tvalid(o_tvalid_hb2),
.m_axis_data_tready(o_tready_hb2),
.m_axis_data_tdata(o_tdata_hb2)
);
end else begin
assign o_tdata_hb2 = 'h0;
assign o_tvalid_hb2 = 1'h0;
assign i_tready_hb2 = 1'b0;
end
if( NUM_HB > 2 ) begin
axi_hb47 halfband3 (
.aclk(clk),
.aresetn(~(reset | clear | reset_on_change)),
.s_axis_data_tvalid(o_tvalid_hb2),
.s_axis_data_tready(i_tready_hb3),
.s_axis_data_tdata({o_tdata_hb2[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb2[CWIDTH-1:0] << 2}),
.m_axis_data_tvalid(o_tvalid_hb3),
.m_axis_data_tready(o_tready_hb3),
.m_axis_data_tdata(o_tdata_hb3)
);
end else begin
assign o_tdata_hb3 = 'h0;
assign o_tvalid_hb3 = 1'h0;
assign i_tready_hb3 = 1'b0;
end
endgenerate
/**************************************************************************
* Halfband selection multiplexing
*************************************************************************/
wire [2*CWIDTH-1:0] o_tdata_cic;
wire [2*CWIDTH-1:0] o_cic;
wire o_tvalid_cic, i_tready_cic;
wire o_tready_cic;
assign o_tdata_halfbands = (hb_rate == 2'b0) ? o_tdata_extd :
(hb_rate == 2'b1) ? {o_tdata_hb1[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb1[CWIDTH-1:0] << 2} :
(hb_rate == 2'b10) ? {o_tdata_hb2[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb2[CWIDTH-1:0] << 2} :
{o_tdata_hb3[2*CWIDTH-1:CWIDTH] << 2, o_tdata_hb3[CWIDTH-1:0] << 2};
// Clearing valid on rate change as the halfbands take 2 cycles to clear
assign o_tvalid_halfbands = reset_on_live_change ? 1'b0 :
(hb_rate == 2'b0) ? i_tvalid :
(hb_rate == 2'b1) ? o_tvalid_hb1 :
(hb_rate == 2'b10) ? o_tvalid_hb2 :
o_tvalid_hb3;
// Throttle input data while rate change is going on
assign i_tready = reset_on_live_change ? 1'b0 :
(hb_rate == 2'b0) ? i_tready_cic :
i_tready_hb1;
assign o_tready_hb1 = reset_on_live_change ? 1'b0 :
(hb_rate == 2'b1) ? i_tready_cic :
i_tready_hb2;
assign o_tready_hb2 = reset_on_live_change ? 1'b0 :
(hb_rate == 2'b10) ? i_tready_cic :
i_tready_hb3;
assign o_tready_hb3 = reset_on_live_change ? 1'b0 : i_tready_cic;
/**************************************************************************
* Ettus CIC; the Xilinx CIC has a minimum interpolation of 4,
* so we use the strobed version and convert to and from AXI.
*************************************************************************/
wire to_cic_stb, from_cic_stb;
wire [2*CWIDTH-1:0] to_cic_data;
wire [CWIDTH-1:0] i_cic;
wire [CWIDTH-1:0] q_cic;
// Convert from AXI to strobed and back to AXI again for the CIC interpolation module
axi_to_strobed #(.WIDTH(2*CWIDTH), .FIFO_SIZE(1), .MIN_RATE(128)) axi_to_strobed (
.clk(clk), .reset(reset | reset_on_change), .clear(clear),
.out_rate(cic_interp_rate), .ready(i_tready_cartesian & o_tready), .error(),
.i_tdata(o_tdata_halfbands), .i_tvalid(o_tvalid_halfbands), .i_tlast(1'b0), .i_tready(i_tready_cic),
.out_stb(to_cic_stb), .out_last(), .out_data(to_cic_data)
);
cic_interpolate #(.WIDTH(CWIDTH), .N(4), .MAX_RATE(CIC_MAX_INTERP)) cic_interpolate_i (
.clk(clk), .reset(reset | clear | reset_on_change),
.rate_stb(reset_on_change),
.rate(cic_interp_rate), .strobe_in(to_cic_stb), .strobe_out(from_cic_stb),
.signal_in(to_cic_data[2*CWIDTH-1:CWIDTH]), .signal_out(i_cic)
);
cic_interpolate #(.WIDTH(CWIDTH), .N(4), .MAX_RATE(CIC_MAX_INTERP)) cic_interpolate_q (
.clk(clk), .reset(reset | clear | reset_on_change),
.rate_stb(reset_on_change),
.rate(cic_interp_rate), .strobe_in(to_cic_stb), .strobe_out(),
.signal_in(to_cic_data[CWIDTH-1:0]), .signal_out(q_cic)
);
assign o_cic = {i_cic, q_cic};
//FIFO_SIZE = 8 infers a bram fifo
strobed_to_axi #(.WIDTH(2*CWIDTH), .FIFO_SIZE(8)) strobed_to_axi (
.clk(clk), .reset(reset | reset_on_change), .clear(clear),
.in_stb(from_cic_stb), .in_data(o_cic), .in_last(1'b0),
.o_tdata(o_tdata_cic), .o_tvalid(o_tvalid_cic), .o_tlast(), .o_tready(o_tready_cic)
);
/**************************************************************************
* Clip back to 16 bits
*************************************************************************/
wire o_tvalid_clip;
axi_round_and_clip_complex #(
.WIDTH_IN(CWIDTH), .WIDTH_OUT(WIDTH), .CLIP_BITS(CWIDTH-WIDTH)) // No rounding, all clip
axi_round_and_clip_complex (
.clk(clk), .reset(reset | clear | reset_on_change),
.i_tdata(o_tdata_cic), .i_tlast(1'b0), .i_tvalid(o_tvalid_cic), .i_tready(o_tready_cic),
.o_tdata(o_tdata), .o_tlast(), .o_tvalid(o_tvalid_clip), .o_tready(i_tready_cartesian));
assign o_tvalid = reset_on_live_change ? 1'b0 : o_tvalid_clip;
assign i_tready_cartesian = reset_on_live_change ? 1'b0 : o_tready;
// Note: To facilitate timed tunes, the code has been moved outside
// the duc module to dds_timed.v.
endmodule // duc
|