1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
|
//
// Copyright 2021 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: dds_timed
//
// Description:
//
// DDS (direct digital synthesis) and frequency shift block that supports
// timed commands via the settings bus.
//
// This block takes in samples on i_t* and performs a complex multiplication
// with a digitally synthesized oscillator to implement a digital RF mixer.
// The output is then scaled (optionally), rounded, and clipped if necessary,
// then output on o_t*.
//
// Timed commands allow you to update the SR_FREQ register (the phase
// increment) at the desired time.
//
// The TUSER port contains the packet header information:
//
// tuser[125] : Has timestamp
// tuser[124] : End of burst (EOB)
// tuser[63:0] : Timestamp
//
// For the input, i_tuser should be valid for the duration of the packet. For
// the output, o_tuser is only guaranteed to be valid for the last sample of
// the packet.
//
// Registers:
//
// SR_FREQ : Frequency shift to apply to the input signal. This can be
// thought of as an unsigned PHASE_ACCUM_WIDTH-bit register
// with PHASE_ACCUM_WIDTH fractional bits. That is, the range
// of this register maps to the real values [0,1). This
// register controls the amount by which the phase accumulator
// for the DDS is incremented each clock cycle. It can
// therefore be thought of as a phase angle corresponding to
// the range [0,2π) radians.
// SR_SCALE_IQ : Scaler by which to multiply the IQ outputs. This is a
// SCALING_WIDTH-bit signed fixed-point register with 15
// fractional bits. If SCALING_WIDTH is 18, then it has the
// range [-4,4).
//
// Parameters:
//
// Note: Care must be used when overriding these parameters because there are
// many dependencies on them. For example, the DDS_WIDTH and
// PHASE_WIDTH depend on the configuration of the underlying DDS IP and
// should only be modified to match that IP.
//
// SR_FREQ_ADDR : Register offset to assign to the SR_FREQ register,
// which contains the phase increment per sample needed
// to achieve the desired DDS frequency.
// SR_SCALE_IQ_ADDR : Register offset to assign to the SR_SCALE_IQ register.
// CMD_FIFO_SIZE : Log2 of the size of the timed command FIFO to use.
// WIDTH : Data width of the I/Q components of the input/output
// samples, typically 16.
// DDS_WIDTH : Bit width to use for the DDS and complex multiplier.
// PHASE_WIDTH : Bit width to use for the phase provided to the DDS IP.
// PHASE_ACCUM_WIDTH : Bit width to use for the phase increment values.
// SCALING_WIDTH : Bit width to use for the IQ scale registers.
// HEADER_WIDTH : Width of the header info (tuser).
// HEADER_FIFO_SIZE : Log2 of the size of the header FIFO.
// SR_AWIDTH : Settings bus address width.
// SR_DWIDTH : Settings bus data width.
// SR_TWIDTH : Settings bus time width.
//
`default_nettype none
module dds_timed #(
parameter SR_FREQ_ADDR = 0,
parameter SR_SCALE_IQ_ADDR = 1,
parameter CMD_FIFO_SIZE = 5,
parameter WIDTH = 16,
parameter DDS_WIDTH = 24,
parameter PHASE_WIDTH = 24,
parameter PHASE_ACCUM_WIDTH = 32,
parameter SCALING_WIDTH = 18,
parameter HEADER_WIDTH = 128,
parameter HEADER_FIFO_SIZE = 5,
parameter SR_AWIDTH = 8,
parameter SR_DWIDTH = 32,
parameter SR_TWIDTH = 64
) (
input wire clk,
input wire reset,
input wire clear,
// Indicates if the timed command FIFO is full
output wire timed_cmd_fifo_full,
// Settings bus for register access
input wire set_stb,
input wire [SR_AWIDTH-1:0] set_addr,
input wire [SR_DWIDTH-1:0] set_data,
input wire [SR_TWIDTH-1:0] set_time,
input wire set_has_time,
// Input sample stream
input wire [ 2*WIDTH-1:0] i_tdata,
input wire i_tlast,
input wire i_tvalid,
output wire i_tready,
input wire [HEADER_WIDTH-1:0] i_tuser,
// Output sample stream
output wire [ 2*WIDTH-1:0] o_tdata,
output wire o_tlast,
output wire o_tvalid,
input wire o_tready,
output wire [HEADER_WIDTH-1:0] o_tuser
);
//---------------------------------------------------------------------------
// Time Tracking
//---------------------------------------------------------------------------
wire [ 2*WIDTH-1:0] int_tdata;
wire [HEADER_WIDTH-1:0] int_tuser;
wire int_tlast;
wire int_tvalid;
wire int_tready;
wire int_tag;
wire [ SR_AWIDTH-1:0] out_set_addr;
wire [ SR_AWIDTH-1:0] timed_set_addr;
wire [ SR_DWIDTH-1:0] out_set_data;
wire [ SR_DWIDTH-1:0] timed_set_data;
wire out_set_stb;
wire timed_set_stb;
// This module checks for timed writes to SR_FREQ_ADDR and outputs the
// register write on timed_set_* (if it was timed) or set_* (if it was not
// timed). It then tags the sample for which the timed command to
// SR_FREQ_ADDR should occur by asserting m_axis_data_tag when that sample is
// output.
axi_tag_time #(
.WIDTH (2*WIDTH),
.NUM_TAGS (1),
.SR_TAG_ADDRS (SR_FREQ_ADDR)
) axi_tag_time (
.clk (clk),
.reset (reset),
.clear (clear),
.tick_rate (16'd1),
.timed_cmd_fifo_full (timed_cmd_fifo_full),
.s_axis_data_tdata (i_tdata),
.s_axis_data_tlast (i_tlast),
.s_axis_data_tvalid (i_tvalid),
.s_axis_data_tready (i_tready),
.s_axis_data_tuser (i_tuser),
.m_axis_data_tdata (int_tdata),
.m_axis_data_tlast (int_tlast),
.m_axis_data_tvalid (int_tvalid),
.m_axis_data_tready (int_tready),
.m_axis_data_tuser (int_tuser),
.m_axis_data_tag (int_tag),
.in_set_stb (set_stb),
.in_set_addr (set_addr),
.in_set_data (set_data),
.in_set_time (set_time),
.in_set_has_time (set_has_time),
.out_set_stb (out_set_stb),
.out_set_addr (out_set_addr),
.out_set_data (out_set_data),
.timed_set_stb (timed_set_stb),
.timed_set_addr (timed_set_addr),
.timed_set_data (timed_set_data)
);
wire [ 2*WIDTH-1:0] dds_in_tdata;
wire [ 2*WIDTH-1:0] unused_tdata;
wire [HEADER_WIDTH-1:0] header_in_tdata;
wire [HEADER_WIDTH-1:0] header_out_tdata;
wire [HEADER_WIDTH-1:0] dds_in_tuser;
wire dds_in_tlast;
wire dds_in_tvalid;
wire dds_in_tready;
wire dds_in_tag;
wire header_in_tvalid;
wire header_in_tready;
wire header_in_tlast;
wire unused_tag;
wire header_out_tvalid;
wire header_out_tready;
//---------------------------------------------------------------------------
// Split Stream
//---------------------------------------------------------------------------
//
// Split the data stream into two streams, one with the data/tag (dds_in_t*)
// and the other with the header (header_in_t*).
//
//---------------------------------------------------------------------------
split_stream #(
.WIDTH (2*WIDTH+HEADER_WIDTH+1),
.ACTIVE_MASK (4'b0011)
) split_head (
.clk (clk),
.reset (reset),
.clear (clear),
.i_tdata ({ int_tdata, int_tuser, int_tag }),
.i_tlast (int_tlast),
.i_tvalid (int_tvalid),
.i_tready (int_tready),
.o0_tdata ({ dds_in_tdata, dds_in_tuser, dds_in_tag }),
.o0_tlast (dds_in_tlast),
.o0_tvalid (dds_in_tvalid),
.o0_tready (dds_in_tready),
.o1_tdata ({ unused_tdata, header_in_tdata, unused_tag }),
.o1_tlast (header_in_tlast),
.o1_tvalid (header_in_tvalid),
.o1_tready (header_in_tready),
.o2_tdata (),
.o2_tlast (),
.o2_tvalid (),
.o2_tready (1'b0),
.o3_tdata (),
.o3_tlast (),
.o3_tvalid (),
.o3_tready (1'b0)
);
//---------------------------------------------------------------------------
// Header FIFO
//---------------------------------------------------------------------------
//
// Store each packet header in a FIFO to be read out when the packet is
// output.
//
//---------------------------------------------------------------------------
axi_fifo #(
.WIDTH (HEADER_WIDTH),
.SIZE (HEADER_FIFO_SIZE)
) axi_fifo_header (
.clk (clk),
.reset (reset),
.clear (clear),
.i_tdata (header_in_tdata),
.i_tvalid (header_in_tvalid & header_in_tlast),
.i_tready (header_in_tready),
.o_tdata (header_out_tdata),
.o_tvalid (header_out_tvalid),
.o_tready (header_out_tready), // Consume header on last output sample
.space (),
.occupied ()
);
//---------------------------------------------------------------------------
// Settings Bus Registers
//---------------------------------------------------------------------------
wire [PHASE_ACCUM_WIDTH-1:0] phase_inc_tdata;
wire [PHASE_ACCUM_WIDTH-1:0] phase_inc_timed_tdata;
wire phase_inc_tlast;
wire phase_inc_tvalid;
wire phase_inc_tready;
wire phase_inc_timed_tlast;
wire phase_inc_timed_tready;
wire phase_inc_timed_tvalid;
// Frequency register (phase increment) used for *un-timed* commands
axi_setting_reg #(
.ADDR (SR_FREQ_ADDR),
.AWIDTH (SR_AWIDTH),
.WIDTH (PHASE_ACCUM_WIDTH),
.STROBE_LAST (1)
) set_freq (
.clk (clk),
.reset (reset),
.set_stb (out_set_stb),
.set_addr (out_set_addr),
.set_data (out_set_data),
.o_tdata (phase_inc_tdata),
.o_tlast (phase_inc_tlast),
.o_tvalid (phase_inc_tvalid),
.o_tready (phase_inc_tready)
);
// Frequency register (phase increment) used for *timed* commands
axi_setting_reg #(
.ADDR (SR_FREQ_ADDR),
.USE_FIFO (1),
.FIFO_SIZE (CMD_FIFO_SIZE),
.AWIDTH (SR_AWIDTH),
.WIDTH (PHASE_ACCUM_WIDTH),
.STROBE_LAST (1)
) set_freq_timed (
.clk (clk),
.reset (reset),
.set_stb (timed_set_stb),
.set_addr (timed_set_addr),
.set_data (timed_set_data),
.o_tdata (phase_inc_timed_tdata),
.o_tlast (phase_inc_timed_tlast),
.o_tvalid (phase_inc_timed_tvalid),
.o_tready (phase_inc_timed_tready)
);
wire [SCALING_WIDTH-1:0] scaling_tdata;
wire scaling_tready;
// Scale value register
axi_setting_reg #(
.ADDR (SR_SCALE_IQ_ADDR),
.AWIDTH (SR_AWIDTH),
.WIDTH (SCALING_WIDTH),
.REPEATS (1)
) set_scale (
.clk (clk),
.reset (reset),
.set_stb (out_set_stb),
.set_addr (out_set_addr),
.set_data (out_set_data),
.o_tdata (scaling_tdata),
.o_tlast (),
.o_tvalid (),
.o_tready (scaling_tready)
);
//---------------------------------------------------------------------------
// Phase Accumulator for DDS
//---------------------------------------------------------------------------
wire [PHASE_ACCUM_WIDTH-1:0] phase_inc_mux_tdata;
reg [PHASE_ACCUM_WIDTH-1:0] phase_inc;
wire phase_inc_mux_tlast;
wire phase_inc_mux_tvalid;
wire phase_inc_mux_tready;
reg [PHASE_ACCUM_WIDTH-1:0] phase;
wire [PHASE_WIDTH-1:0] phase_tdata = phase[PHASE_ACCUM_WIDTH-1:PHASE_ACCUM_WIDTH-PHASE_WIDTH];
wire phase_tvalid;
wire phase_tready;
wire phase_tlast;
wire dds_in_teob = dds_in_tuser[124];
// Multiplexer to select between the timed and un-timed phase registers.
assign phase_inc_mux_tdata = phase_inc_timed_tready ? phase_inc_timed_tdata : phase_inc_tdata;
assign phase_inc_mux_tlast = phase_inc_timed_tready ? phase_inc_timed_tlast : phase_inc_tlast;
assign phase_inc_mux_tvalid = phase_inc_timed_tready ? phase_inc_timed_tvalid : phase_inc_tvalid;
assign phase_inc_tready = phase_inc_mux_tready;
assign phase_inc_timed_tready = phase_inc_mux_tready & dds_in_tag;
assign phase_inc_mux_tready = phase_tready;
// Phase is only valid when input IQ data stream is valid
assign phase_tvalid = dds_in_tvalid;
assign phase_tlast = dds_in_tlast;
// Phase increment register, sourced from either the timed or un-timed
// SR_FREQ register.
always @(posedge clk) begin
if (reset | clear) begin
phase_inc <= 0;
end else if (phase_inc_mux_tvalid & phase_inc_mux_tready) begin
phase_inc <= phase_inc_mux_tdata;
end
end
// Phase accumulator for DDS. This increments the "phase" input provided to
// the DDS IP.
always @(posedge clk) begin
if (reset | clear | (phase_inc_mux_tvalid & phase_inc_mux_tready)) begin
// Reset the phase on reset or clear, but also whenever the phase
// increment is updated.
phase <= 0;
end else if (dds_in_tvalid & dds_in_tready) begin
if (dds_in_tlast & dds_in_teob) begin
// Reset the phase at the end of each burst so we get predictable
// output.
phase <= 0;
end else begin
// Increment the phase for each new sample.
phase <= phase + phase_inc;
end
end
end
//---------------------------------------------------------------------------
// AXI Sync
//---------------------------------------------------------------------------
//
// Sync the IQ and phase paths' pipeline delay. This is needed to ensure that
// applying the phase update happens on the correct sample regardless of
// differences in path delays.
//
//---------------------------------------------------------------------------
wire [PHASE_WIDTH-1:0] phase_sync_tdata;
wire phase_sync_tvalid;
wire phase_sync_tready;
wire phase_sync_tlast;
wire [ WIDTH*2-1:0] dds_in_sync_tdata;
wire dds_in_sync_tvalid;
wire dds_in_sync_tready;
wire dds_in_sync_tlast;
axi_sync #(
.SIZE (2),
.WIDTH_VEC ({ PHASE_WIDTH, 2*WIDTH }), // Vector of 32-bit width values
.FIFO_SIZE (0)
) axi_sync_i (
.clk (clk),
.reset (reset),
.clear (clear),
.i_tdata ({ phase_tdata, dds_in_tdata }),
.i_tlast ({ phase_tlast, dds_in_tlast }),
.i_tvalid ({ phase_tvalid, dds_in_tvalid }),
.i_tready ({ phase_tready, dds_in_tready }),
.o_tdata ({ phase_sync_tdata, dds_in_sync_tdata }),
.o_tlast ({ phase_sync_tlast, dds_in_sync_tlast }),
.o_tvalid ({ phase_sync_tvalid, dds_in_sync_tvalid }),
.o_tready ({ phase_sync_tready, dds_in_sync_tready })
);
//---------------------------------------------------------------------------
// DDS and Complex Multiplier
//---------------------------------------------------------------------------
wire [DDS_WIDTH-1:0] dds_in_i_tdata;
wire [DDS_WIDTH-1:0] dds_in_q_tdata;
wire [DDS_WIDTH-1:0] dds_out_i_tdata;
wire [DDS_WIDTH-1:0] dds_out_q_tdata;
wire dds_out_tlast;
wire dds_out_tvalid;
wire dds_out_tready;
// Sign extend I and Q to get up to 24 bits.
sign_extend #(
.bits_in (WIDTH),
.bits_out (DDS_WIDTH)
) sign_extend_i (
.in (dds_in_sync_tdata[2*WIDTH-1:WIDTH]),
.out (dds_in_i_tdata)
);
sign_extend #(
.bits_in (WIDTH),
.bits_out (DDS_WIDTH)
) sign_extend_q (
.in (dds_in_sync_tdata[WIDTH-1:0]),
.out (dds_in_q_tdata)
);
// Wrapper for DDS + Complex Multiply. This block expects {q,i} instead of
// {i,q} data ordering.
dds_freq_tune_duc dds_freq_tune_duc_i (
.clk (clk),
.reset (reset | clear),
// IQ input (signed 24-bit number with 15 fractional bits)
.s_axis_din_tlast (dds_in_sync_tlast),
.s_axis_din_tvalid (dds_in_sync_tvalid),
.s_axis_din_tready (dds_in_sync_tready),
.s_axis_din_tdata ({ dds_in_q_tdata, dds_in_i_tdata }),
// Phase input from DDS (unsigned 24-bit number with 24 fractional bits)
.s_axis_phase_tlast (phase_sync_tlast),
.s_axis_phase_tvalid(phase_sync_tvalid),
.s_axis_phase_tready(phase_sync_tready),
.s_axis_phase_tdata (phase_sync_tdata), // 24-bit
// IQ output (signed 24-bit number with 15 fractional bits)
.m_axis_dout_tlast (dds_out_tlast),
.m_axis_dout_tvalid (dds_out_tvalid),
.m_axis_dout_tready (dds_out_tready),
.m_axis_dout_tdata ({dds_out_q_tdata, dds_out_i_tdata})
);
//---------------------------------------------------------------------------
// Scale the IQ Output
//---------------------------------------------------------------------------
wire [DDS_WIDTH+SCALING_WIDTH-1:0] scaled_i_tdata;
wire [DDS_WIDTH+SCALING_WIDTH-1:0] scaled_q_tdata;
wire scaled_tlast;
wire scaled_tvalid;
wire scaled_tready;
mult #(
.WIDTH_A (DDS_WIDTH),
.WIDTH_B (SCALING_WIDTH),
.WIDTH_P (DDS_WIDTH+SCALING_WIDTH),
.DROP_TOP_P (4),
.LATENCY (3),
.CASCADE_OUT (0)
) mult_i (
.clk (clk),
.reset (reset | clear),
.a_tdata (dds_out_i_tdata),
.a_tlast (dds_out_tlast),
.a_tvalid (dds_out_tvalid),
.a_tready (dds_out_tready),
.b_tdata (scaling_tdata),
.b_tlast (1'b0),
.b_tvalid (dds_out_tvalid), // Align scaling_tdata with dds_out_tdata
.b_tready (scaling_tready),
.p_tdata (scaled_i_tdata),
.p_tlast (scaled_tlast),
.p_tvalid (scaled_tvalid),
.p_tready (scaled_tready)
);
mult #(
.WIDTH_A (DDS_WIDTH),
.WIDTH_B (SCALING_WIDTH),
.WIDTH_P (DDS_WIDTH+SCALING_WIDTH),
.DROP_TOP_P (4),
.LATENCY (3),
.CASCADE_OUT (0)
) mult_q (
.clk (clk),
.reset (reset | clear),
.a_tdata (dds_out_q_tdata),
.a_tlast (),
.a_tvalid (dds_out_tvalid),
.a_tready (),
.b_tdata (scaling_tdata),
.b_tlast (1'b0),
.b_tvalid (dds_out_tvalid), // Align scaling_tdata with dds_out_tdata
.b_tready (),
.p_tdata (scaled_q_tdata),
.p_tlast (),
.p_tvalid (),
.p_tready (scaled_tready)
);
//---------------------------------------------------------------------------
// Round
//---------------------------------------------------------------------------
wire [2*WIDTH-1:0] sample_tdata;
wire sample_tlast;
wire sample_tvalid;
wire sample_tready;
axi_round_and_clip_complex #(
.WIDTH_IN (DDS_WIDTH+SCALING_WIDTH),
.WIDTH_OUT (WIDTH),
.CLIP_BITS (12)
) axi_round_and_clip_complex_i (
.clk (clk),
.reset (reset | clear),
.i_tdata ({scaled_i_tdata, scaled_q_tdata}),
.i_tlast (scaled_tlast),
.i_tvalid (scaled_tvalid),
.i_tready (scaled_tready),
.o_tdata (sample_tdata),
.o_tlast (sample_tlast),
.o_tvalid (sample_tvalid),
.o_tready (sample_tready)
);
//---------------------------------------------------------------------------
// Output Logic
//---------------------------------------------------------------------------
// Throttle output on last sample if header is not valid
assign header_out_tready = sample_tlast & sample_tvalid & o_tready;
assign sample_tready = (sample_tvalid & sample_tlast) ?
(header_out_tvalid & o_tready) : o_tready;
assign o_tvalid = (sample_tvalid & sample_tlast) ?
header_out_tvalid : sample_tvalid;
assign o_tlast = sample_tlast;
assign o_tdata = sample_tdata;
assign o_tuser = header_out_tdata;
endmodule
`default_nettype wire
|